------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable semi-heterogeneous vector equality over setoids ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (DecSetoid) open import Relation.Binary.Structures using (IsDecEquivalence) module Data.Vec.Relation.Binary.Equality.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where open import Data.Nat.Base using (ℕ) import Data.Vec.Relation.Binary.Equality.Setoid as Equality import Data.Vec.Relation.Binary.Pointwise.Inductive as PW open import Level using (_⊔_) open import Relation.Binary.Definitions using (Decidable) open DecSetoid DS ------------------------------------------------------------------------ -- Make all definitions from equality available open Equality setoid public ------------------------------------------------------------------------ -- Additional properties infix 4 _≋?_ _≋?_ : ∀ {m n} → Decidable (_≋_ {m} {n}) _≋?_ = PW.decidable _≟_ ≋-isDecEquivalence : ∀ n → IsDecEquivalence (_≋_ {n}) ≋-isDecEquivalence = PW.isDecEquivalence isDecEquivalence ≋-decSetoid : ℕ → DecSetoid a (a ⊔ ℓ) ≋-decSetoid = PW.decSetoid DS
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4