------------------------------------------------------------------------ -- The Agda standard library -- -- Membership of vectors, along with some additional definitions. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Definitions using (_Respects_) module Data.Vec.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where open import Function.Base using (_∘_; flip) open import Data.Vec.Base as Vec using (Vec; []; _∷_) open import Data.Vec.Relation.Unary.Any as Any using (Any; here; there; index) open import Data.Product.Base using (∃; _×_; _,_) open import Relation.Nullary.Negation using (¬_) open import Relation.Unary using (Pred) open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definitions infix 4 _∈_ _∉_ _∈_ : A → ∀ {n} → Vec A n → Set _ x ∈ xs = Any (x ≈_) xs _∉_ : A → ∀ {n} → Vec A n → Set _ x ∉ xs = ¬ x ∈ xs ------------------------------------------------------------------------ -- Operations mapWith∈ : ∀ {b} {B : Set b} {n} (xs : Vec A n) → (∀ {x} → x ∈ xs → B) → Vec B n mapWith∈ [] f = [] mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there) infixr 5 _∷=_ _∷=_ : ∀ {n} {xs : Vec A n} {x} → x ∈ xs → A → Vec A n _∷=_ {xs = xs} x∈xs v = xs Vec.[ index x∈xs ]≔ v ------------------------------------------------------------------------ -- Finding and losing witnesses module _ {p} {P : Pred A p} where find : ∀ {n} {xs : Vec A n} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = _ , here refl , px find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px lose : P Respects _≈_ → ∀ {x n} {xs : Vec A n} → x ∈ xs → P x → Any P xs lose resp x∈xs px = Any.map (flip resp px) x∈xs
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4