------------------------------------------------------------------------ -- The Agda standard library -- -- Non-empty AVL trees, where equality for keys is propositional equality ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (Rel) open import Relation.Binary.Structures using (IsStrictTotalOrder) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; subst) module Data.Tree.AVL.NonEmpty.Propositional {k r} {Key : Set k} {_<_ : Rel Key r} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where open import Level using (Level; _⊔_) open import Relation.Binary.Bundles using (StrictTotalOrder) private strictTotalOrder : StrictTotalOrder _ _ _ strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder} open import Data.Tree.AVL.Value (StrictTotalOrder.Eq.setoid strictTotalOrder) import Data.Tree.AVL.NonEmpty strictTotalOrder as AVL⁺ Tree⁺ : ∀ {v} (V : Key → Set v) → Set (k ⊔ v ⊔ r) Tree⁺ V = AVL⁺.Tree⁺ λ where .Value.family → V .Value.respects refl t → t open AVL⁺ hiding (Tree⁺) public
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4