A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Data.Tree.AVL.NonEmpty.Propositional.html below:

Data.Tree.AVL.NonEmpty.Propositional

Data.Tree.AVL.NonEmpty.Propositional
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-empty AVL trees, where equality for keys is propositional equality
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Structures using (IsStrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; subst)

module Data.Tree.AVL.NonEmpty.Propositional
  {k r} {Key : Set k} {_<_ : Rel Key r}
  (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where

open import Level using (Level; _⊔_)
open import Relation.Binary.Bundles using (StrictTotalOrder)

private
  strictTotalOrder : StrictTotalOrder _ _ _
  strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder}
open import Data.Tree.AVL.Value (StrictTotalOrder.Eq.setoid strictTotalOrder)
import Data.Tree.AVL.NonEmpty strictTotalOrder as AVL⁺

Tree⁺ :  {v} (V : Key  Set v)  Set (k  v  r)
Tree⁺ V = AVL⁺.Tree⁺ λ where
  .Value.family           V
  .Value.respects refl t  t

open AVL⁺ hiding (Tree⁺) public

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4