------------------------------------------------------------------------ -- The Agda standard library -- -- Membership relation for AVL Maps identifying values up to -- propositional equality. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (StrictTotalOrder) module Data.Tree.AVL.Map.Membership.Propositional {a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where open import Data.Product.Base using (_×_) open import Data.Product.Relation.Binary.Pointwise.NonDependent using () renaming (Pointwise to _×ᴿ_) open import Level using (Level) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_) open import Relation.Nullary.Negation.Core using (¬_) open StrictTotalOrder strictTotalOrder using (_≈_) renaming (Carrier to Key) open import Data.Tree.AVL.Map strictTotalOrder using (Map) open import Data.Tree.AVL.Map.Relation.Unary.Any strictTotalOrder using (Any) private variable v : Level V : Set v m : Map V kx : Key × V infix 4 _≈ₖᵥ_ _≈ₖᵥ_ : Rel (Key × V) _ _≈ₖᵥ_ = _≈_ ×ᴿ _≡_ ------------------------------------------------------------------------ -- Membership: ∈ₖᵥ infix 4 _∈ₖᵥ_ _∉ₖᵥ_ _∈ₖᵥ_ : Key × V → Map V → Set _ kx ∈ₖᵥ m = Any (_≈ₖᵥ_ kx) m _∉ₖᵥ_ : Key × V → Map V → Set _ kx ∉ₖᵥ m = ¬ kx ∈ₖᵥ m
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4