------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of refinement types ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Refinement.Properties where open import Data.Refinement.Base open import Level using (Level; _⊔_) open import Relation.Binary.Definitions using (DecidableEquality) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) import Relation.Nullary.Decidable.Core as Dec private variable a p : Level A : Set a P : A → Set p v w : [ x ∈ A ∣ P x ] ------------------------------------------------------------------------ -- Basic properties value-injective : value v ≡ value w → v ≡ w value-injective refl = refl module _ (eq? : DecidableEquality A) where infix 4 _≟_ _≟_ : DecidableEquality [ x ∈ A ∣ P x ] v ≟ w = Dec.map′ value-injective (cong value) (eq? (value v) (value w))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4