------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} {-# OPTIONS --warning=noUserWarning #-} -- for +-rawMonoid, *-rawMonoid (issue #1865, #1844, #1755) module Data.Rational.Properties where open import Algebra.Apartness using (IsHeytingCommutativeRing; IsHeytingField ; HeytingCommutativeRing; HeytingField) open import Algebra.Construct.NaturalChoice.Base using (MinOperator; MaxOperator) import Algebra.Construct.NaturalChoice.MinMaxOp as MinMaxOp import Algebra.Lattice.Construct.NaturalChoice.MinMaxOp as LatticeMinMaxOp open import Algebra.Consequences.Propositional open import Algebra.Morphism open import Algebra.Bundles import Algebra.Morphism.MagmaMonomorphism as MagmaMonomorphisms import Algebra.Morphism.MonoidMonomorphism as MonoidMonomorphisms import Algebra.Morphism.GroupMonomorphism as GroupMonomorphisms import Algebra.Morphism.RingMonomorphism as RingMonomorphisms import Algebra.Lattice.Morphism.LatticeMonomorphism as LatticeMonomorphisms import Algebra.Properties.CommutativeSemigroup as CommSemigroupProperties import Algebra.Properties.Group as GroupProperties open import Data.Bool.Base using (T; true; false) open import Data.Integer.Base as ℤ using (ℤ; +_; -[1+_]; +[1+_]; +0; 0ℤ; 1ℤ; _◃_) open import Data.Integer.Coprimality using (coprime-divisor) import Data.Integer.Properties as ℤ open import Data.Integer.GCD using (gcd; gcd[i,j]≡0⇒i≡0; gcd[i,j]≡0⇒j≡0) open import Data.Integer.Solver renaming (module +-*-Solver to ℤ-solver) open import Data.Nat.Base as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕ open import Data.Nat.Coprimality as C using (Coprime; coprime?) open import Data.Nat.Divisibility using (_∣_; divides; ∣-antisym; *-pres-∣) import Data.Nat.GCD as ℕ import Data.Nat.DivMod as ℕ open import Data.Product.Base using (proj₁; proj₂; _×_; _,_; uncurry) open import Data.Rational.Base open import Data.Rational.Unnormalised.Base as ℚᵘ using (ℚᵘ; mkℚᵘ; *≡*; *≤*; *<*) renaming ( ↥_ to ↥ᵘ_; ↧_ to ↧ᵘ_; ↧ₙ_ to ↧ₙᵘ_ ; _≃_ to _≃ᵘ_; _≤_ to _≤ᵘ_; _<_ to _<ᵘ_ ; _+_ to _+ᵘ_) import Data.Rational.Unnormalised.Properties as ℚᵘ open import Data.Sum.Base as Sum using (inj₁; inj₂; [_,_]′; _⊎_) import Data.Sign.Base as Sign open import Function.Base using (_∘_; _∘′_; _∘₂_; _$_; flip) open import Function.Definitions using (Congruent; Injective) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.Morphism.Structures using (IsRelHomomorphism; IsRelMonomorphism ; IsOrderHomomorphism; IsOrderMonomorphism) import Relation.Binary.Morphism.OrderMonomorphism as OrderMonomorphisms import Relation.Binary.Properties.DecSetoid as DecSetoidProperties open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong; cong₂; sym; trans; _≢_; subst; subst₂; resp₂) open import Relation.Binary.PropositionalEquality.Properties using (setoid; decSetoid; module ≡-Reasoning; isEquivalence) import Relation.Binary.Reasoning.Setoid as ≈-Reasoning open import Relation.Binary.Reasoning.Syntax using (module ≃-syntax) open import Relation.Nullary.Decidable.Core as Dec using (yes; no; recompute; map′; _×-dec_) open import Relation.Nullary.Negation.Core using (¬_; contradiction) open import Algebra.Definitions {A = ℚ} _≡_ open import Algebra.Structures {A = ℚ} _≡_ private variable p q r : ℚ ------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------ mkℚ-cong : ∀ {n₁ n₂ d₁ d₂} .{c₁ : Coprime ℤ.∣ n₁ ∣ (suc d₁)} .{c₂ : Coprime ℤ.∣ n₂ ∣ (suc d₂)} → n₁ ≡ n₂ → d₁ ≡ d₂ → mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ mkℚ-cong refl refl = refl mkℚ-injective : ∀ {n₁ n₂ d₁ d₂} .{c₁ : Coprime ℤ.∣ n₁ ∣ (suc d₁)} .{c₂ : Coprime ℤ.∣ n₂ ∣ (suc d₂)} → mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ → n₁ ≡ n₂ × d₁ ≡ d₂ mkℚ-injective refl = refl , refl infix 4 _≟_ _≟_ : DecidableEquality ℚ mkℚ n₁ d₁ _ ≟ mkℚ n₂ d₂ _ = map′ (uncurry mkℚ-cong) mkℚ-injective (n₁ ℤ.≟ n₂ ×-dec d₁ ℕ.≟ d₂) ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid ℚ ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ 1≢0 : 1ℚ ≢ 0ℚ 1≢0 = λ () ------------------------------------------------------------------------ -- mkℚ+ ------------------------------------------------------------------------ mkℚ+-cong : ∀ {n₁ n₂ d₁ d₂} .{{_ : ℕ.NonZero d₁}} .{{_ : ℕ.NonZero d₂}} .{c₁ : Coprime n₁ d₁} .{c₂ : Coprime n₂ d₂} → n₁ ≡ n₂ → d₁ ≡ d₂ → mkℚ+ n₁ d₁ c₁ ≡ mkℚ+ n₂ d₂ c₂ mkℚ+-cong refl refl = refl mkℚ+-injective : ∀ {n₁ n₂ d₁ d₂} .{{_ : ℕ.NonZero d₁}} .{{_ : ℕ.NonZero d₂}} .{c₁ : Coprime n₁ d₁} .{c₂ : Coprime n₂ d₂} → mkℚ+ n₁ d₁ c₁ ≡ mkℚ+ n₂ d₂ c₂ → n₁ ≡ n₂ × d₁ ≡ d₂ mkℚ+-injective {d₁ = suc _} {suc _} refl = refl , refl ↥-mkℚ+ : ∀ n d .{{_ : ℕ.NonZero d}} .{c : Coprime n d} → ↥ (mkℚ+ n d c) ≡ + n ↥-mkℚ+ n (suc d) = refl ↧-mkℚ+ : ∀ n d .{{_ : ℕ.NonZero d}} .{c : Coprime n d} → ↧ (mkℚ+ n d c) ≡ + d ↧-mkℚ+ n (suc d) = refl mkℚ+-nonNeg : ∀ n d .{{_ : ℕ.NonZero d}} .{c : Coprime n d} → NonNegative (mkℚ+ n d c) mkℚ+-nonNeg n (suc d) = _ mkℚ+-pos : ∀ n d .{{_ : ℕ.NonZero n}} .{{_ : ℕ.NonZero d}} .{c : Coprime n d} → Positive (mkℚ+ n d c) mkℚ+-pos (suc n) (suc d) = _ ------------------------------------------------------------------------ -- Numerator and denominator equality ------------------------------------------------------------------------ drop-*≡* : p ≃ q → ↥ p ℤ.* ↧ q ≡ ↥ q ℤ.* ↧ p drop-*≡* (*≡* eq) = eq ≡⇒≃ : _≡_ ⇒ _≃_ ≡⇒≃ refl = *≡* refl ≃⇒≡ : _≃_ ⇒ _≡_ ≃⇒≡ {x = mkℚ n₁ d₁ c₁} {y = mkℚ n₂ d₂ c₂} (*≡* eq) = helper where open ≡-Reasoning 1+d₁∣1+d₂ : suc d₁ ∣ suc d₂ 1+d₁∣1+d₂ = coprime-divisor (+ suc d₁) n₁ (+ suc d₂) (C.sym (C.recompute c₁)) $ divides ℤ.∣ n₂ ∣ $ begin ℤ.∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ cong ℤ.∣_∣ eq ⟩ ℤ.∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ ℤ.abs-* n₂ (+ suc d₁) ⟩ ℤ.∣ n₂ ∣ ℕ.* suc d₁ ∎ 1+d₂∣1+d₁ : suc d₂ ∣ suc d₁ 1+d₂∣1+d₁ = coprime-divisor (+ suc d₂) n₂ (+ suc d₁) (C.sym (C.recompute c₂)) $ divides ℤ.∣ n₁ ∣ (begin ℤ.∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ cong ℤ.∣_∣ (sym eq) ⟩ ℤ.∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ ℤ.abs-* n₁ (+ suc d₂) ⟩ ℤ.∣ n₁ ∣ ℕ.* suc d₂ ∎) helper : mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ helper with ∣-antisym 1+d₁∣1+d₂ 1+d₂∣1+d₁ ... | refl with ℤ.*-cancelʳ-≡ n₁ n₂ (+ suc d₁) eq ... | refl = refl ≃-sym : Symmetric _≃_ ≃-sym = ≡⇒≃ ∘′ sym ∘′ ≃⇒≡ ------------------------------------------------------------------------ -- Properties of ↥ ------------------------------------------------------------------------ ↥p≡0⇒p≡0 : ∀ p → ↥ p ≡ 0ℤ → p ≡ 0ℚ ↥p≡0⇒p≡0 (mkℚ +0 d-1 0-coprime-d) ↥p≡0 = mkℚ-cong refl d-1≡0 where d-1≡0 = ℕ.suc-injective (C.0-coprimeTo-m⇒m≡1 (C.recompute 0-coprime-d)) p≡0⇒↥p≡0 : ∀ p → p ≡ 0ℚ → ↥ p ≡ 0ℤ p≡0⇒↥p≡0 p refl = refl ↥p≡↥q≡0⇒p≡q : ∀ p q → ↥ p ≡ 0ℤ → ↥ q ≡ 0ℤ → p ≡ q ↥p≡↥q≡0⇒p≡q p q ↥p≡0 ↥q≡0 = trans (↥p≡0⇒p≡0 p ↥p≡0) (sym (↥p≡0⇒p≡0 q ↥q≡0)) ------------------------------------------------------------------------ -- Basic properties of sign predicates ------------------------------------------------------------------------ nonNeg≢neg : ∀ p q → .{{NonNegative p}} → .{{Negative q}} → p ≢ q nonNeg≢neg (mkℚ (+ _) _ _) (mkℚ -[1+ _ ] _ _) () pos⇒nonNeg : ∀ p → .{{Positive p}} → NonNegative p pos⇒nonNeg p = ℚᵘ.pos⇒nonNeg (toℚᵘ p) neg⇒nonPos : ∀ p → .{{Negative p}} → NonPositive p neg⇒nonPos p = ℚᵘ.neg⇒nonPos (toℚᵘ p) nonNeg∧nonZero⇒pos : ∀ p → .{{NonNegative p}} → .{{NonZero p}} → Positive p nonNeg∧nonZero⇒pos (mkℚ +[1+ _ ] _ _) = _ pos⇒nonZero : ∀ p → .{{Positive p}} → NonZero p pos⇒nonZero (mkℚ +[1+ _ ] _ _) = _ neg⇒nonZero : ∀ p → .{{Negative p}} → NonZero p neg⇒nonZero (mkℚ -[1+ _ ] _ _) = _ ------------------------------------------------------------------------ -- Properties of -_ ------------------------------------------------------------------------ ↥-neg : ∀ p → ↥ (- p) ≡ ℤ.- (↥ p) ↥-neg (mkℚ -[1+ _ ] _ _) = refl ↥-neg (mkℚ +0 _ _) = refl ↥-neg (mkℚ +[1+ _ ] _ _) = refl ↧-neg : ∀ p → ↧ (- p) ≡ ↧ p ↧-neg (mkℚ -[1+ _ ] _ _) = refl ↧-neg (mkℚ +0 _ _) = refl ↧-neg (mkℚ +[1+ _ ] _ _) = refl neg-injective : - p ≡ - q → p ≡ q neg-injective {mkℚ +[1+ m ] _ _} {mkℚ +[1+ n ] _ _} refl = refl neg-injective {mkℚ +0 _ _} {mkℚ +0 _ _} refl = refl neg-injective {mkℚ -[1+ m ] _ _} {mkℚ -[1+ n ] _ _} refl = refl neg-injective {mkℚ +[1+ m ] _ _} {mkℚ -[1+ n ] _ _} () neg-injective {mkℚ +0 _ _} {mkℚ -[1+ n ] _ _} () neg-injective {mkℚ -[1+ m ] _ _} {mkℚ +[1+ n ] _ _} () neg-injective {mkℚ -[1+ m ] _ _} {mkℚ +0 _ _} () neg-pos : Positive p → Negative (- p) neg-pos {mkℚ +[1+ _ ] _ _} _ = _ ------------------------------------------------------------------------ -- Properties of normalize ------------------------------------------------------------------------ normalize-coprime : ∀ {n d-1} .(c : Coprime n (suc d-1)) → normalize n (suc d-1) ≡ mkℚ (+ n) d-1 c normalize-coprime {n} {d-1} c = begin normalize n d ≡⟨⟩ mkℚ+ ((n ℕ./ g) {{g≢0}}) ((d ℕ./ g) {{g≢0}}) _ ≡⟨ mkℚ+-cong {c₂ = c₂} (ℕ./-congʳ {{g≢0}} g≡1) (ℕ./-congʳ {{g≢0}} g≡1) ⟩ mkℚ+ (n ℕ./ 1) (d ℕ./ 1) _ ≡⟨ mkℚ+-cong {c₂ = c} (ℕ.n/1≡n n) (ℕ.n/1≡n d) ⟩ mkℚ+ n d _ ≡⟨⟩ mkℚ (+ n) d-1 _ ∎ where open ≡-Reasoning; d = suc d-1; g = ℕ.gcd n d c′ = C.recompute c c₂ : Coprime (n ℕ./ 1) (d ℕ./ 1) c₂ = subst₂ Coprime (sym (ℕ.n/1≡n n)) (sym (ℕ.n/1≡n d)) c′ g≡1 = C.coprime⇒gcd≡1 c′ instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 n d (inj₂ λ())) n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 n d {{_}} {{g≢0}}) d/1≢0 = ℕ.≢-nonZero (subst (_≢ 0) (sym (ℕ.n/1≡n d)) λ()) ↥-normalize : ∀ i n .{{_ : ℕ.NonZero n}} → ↥ (normalize i n) ℤ.* gcd (+ i) (+ n) ≡ + i ↥-normalize i n = begin ↥ (normalize i n) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↥-mkℚ+ _ (n ℕ./ g)) ⟩ + i/g ℤ.* + g ≡⟨⟩ Sign.+ ◃ i/g ℕ.* g ≡⟨ cong (Sign.+ ◃_) (ℕ.m/n*n≡m (ℕ.gcd[m,n]∣m i n)) ⟩ Sign.+ ◃ i ≡⟨ ℤ.+◃n≡+n i ⟩ + i ∎ where open ≡-Reasoning g = ℕ.gcd i n instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 i n (inj₂ (ℕ.≢-nonZero⁻¹ n))) instance n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 i n {{gcd≢0 = g≢0}}) i/g = (i ℕ./ g) {{g≢0}} ↧-normalize : ∀ i n .{{_ : ℕ.NonZero n}} → ↧ (normalize i n) ℤ.* gcd (+ i) (+ n) ≡ + n ↧-normalize i n = begin ↧ (normalize i n) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↧-mkℚ+ _ (n ℕ./ g)) ⟩ + (n ℕ./ g) ℤ.* + g ≡⟨⟩ Sign.+ ◃ n ℕ./ g ℕ.* g ≡⟨ cong (Sign.+ ◃_) (ℕ.m/n*n≡m (ℕ.gcd[m,n]∣n i n)) ⟩ Sign.+ ◃ n ≡⟨ ℤ.+◃n≡+n n ⟩ + n ∎ where open ≡-Reasoning g = ℕ.gcd i n instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 i n (inj₂ (ℕ.≢-nonZero⁻¹ n))) instance n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 i n {{gcd≢0 = g≢0}}) normalize-cong : ∀ {m₁ n₁ m₂ n₂} .{{_ : ℕ.NonZero n₁}} .{{_ : ℕ.NonZero n₂}} → m₁ ≡ m₂ → n₁ ≡ n₂ → normalize m₁ n₁ ≡ normalize m₂ n₂ normalize-cong {m} {n} refl refl = mkℚ+-cong (ℕ./-congʳ {n = g} refl) (ℕ./-congʳ {n = g} refl) where g = ℕ.gcd m n instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 m n (inj₂ (ℕ.≢-nonZero⁻¹ n))) n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 m n {{gcd≢0 = g≢0}}) normalize-nonNeg : ∀ m n .{{_ : ℕ.NonZero n}} → NonNegative (normalize m n) normalize-nonNeg m n = mkℚ+-nonNeg (m ℕ./ g) (n ℕ./ g) where g = ℕ.gcd m n instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 m n (inj₂ (ℕ.≢-nonZero⁻¹ n))) n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 m n {{gcd≢0 = g≢0}}) normalize-pos : ∀ m n .{{_ : ℕ.NonZero n}} .{{_ : ℕ.NonZero m}} → Positive (normalize m n) normalize-pos m n = mkℚ+-pos (m ℕ./ ℕ.gcd m n) (n ℕ./ ℕ.gcd m n) where g = ℕ.gcd m n instance g≢0 = ℕ.≢-nonZero (ℕ.gcd[m,n]≢0 m n (inj₂ (ℕ.≢-nonZero⁻¹ n))) n/g≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 m n {{gcd≢0 = g≢0}}) m/g≢0 = ℕ.≢-nonZero (ℕ.m/gcd[m,n]≢0 m n {{gcd≢0 = g≢0}}) normalize-injective-≃ : ∀ m n c d {{_ : ℕ.NonZero c}} {{_ : ℕ.NonZero d}} → normalize m c ≡ normalize n d → m ℕ.* d ≡ n ℕ.* c normalize-injective-≃ m n c d eq = ℕ./-cancelʳ-≡ md∣gcd[m,c]gcd[n,d] nc∣gcd[m,c]gcd[n,d] $ begin (m ℕ.* d) ℕ./ (gcd[m,c] ℕ.* gcd[n,d]) ≡⟨ ℕ./-*-interchange gcd[m,c]∣m gcd[n,d]∣d ⟩ (m ℕ./ gcd[m,c]) ℕ.* (d ℕ./ gcd[n,d]) ≡⟨ cong₂ ℕ._*_ m/gcd[m,c]≡n/gcd[n,d] (sym c/gcd[m,c]≡d/gcd[n,d]) ⟩ (n ℕ./ gcd[n,d]) ℕ.* (c ℕ./ gcd[m,c]) ≡⟨ ℕ./-*-interchange gcd[n,d]∣n gcd[m,c]∣c ⟨ (n ℕ.* c) ℕ./ (gcd[n,d] ℕ.* gcd[m,c]) ≡⟨ ℕ./-congʳ (ℕ.*-comm gcd[n,d] gcd[m,c]) ⟩ (n ℕ.* c) ℕ./ (gcd[m,c] ℕ.* gcd[n,d]) ∎ where open ≡-Reasoning gcd[m,c] = ℕ.gcd m c gcd[n,d] = ℕ.gcd n d gcd[m,c]∣m = ℕ.gcd[m,n]∣m m c gcd[m,c]∣c = ℕ.gcd[m,n]∣n m c gcd[n,d]∣n = ℕ.gcd[m,n]∣m n d gcd[n,d]∣d = ℕ.gcd[m,n]∣n n d md∣gcd[m,c]gcd[n,d] = *-pres-∣ gcd[m,c]∣m gcd[n,d]∣d nc∣gcd[n,d]gcd[m,c] = *-pres-∣ gcd[n,d]∣n gcd[m,c]∣c nc∣gcd[m,c]gcd[n,d] = subst (_∣ n ℕ.* c) (ℕ.*-comm gcd[n,d] gcd[m,c]) nc∣gcd[n,d]gcd[m,c] gcd[m,c]≢0′ = ℕ.gcd[m,n]≢0 m c (inj₂ (ℕ.≢-nonZero⁻¹ c)) gcd[n,d]≢0′ = ℕ.gcd[m,n]≢0 n d (inj₂ (ℕ.≢-nonZero⁻¹ d)) instance gcd[m,c]≢0 = ℕ.≢-nonZero gcd[m,c]≢0′ gcd[n,d]≢0 = ℕ.≢-nonZero gcd[n,d]≢0′ c/gcd[m,c]≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 m c {{gcd≢0 = gcd[m,c]≢0}}) d/gcd[n,d]≢0 = ℕ.≢-nonZero (ℕ.n/gcd[m,n]≢0 n d {{gcd≢0 = gcd[n,d]≢0}}) gcd[m,c]*gcd[n,d]≢0 = ℕ.m*n≢0 gcd[m,c] gcd[n,d] gcd[n,d]*gcd[m,c]≢0 = ℕ.m*n≢0 gcd[n,d] gcd[m,c] div = mkℚ+-injective eq m/gcd[m,c]≡n/gcd[n,d] = proj₁ div c/gcd[m,c]≡d/gcd[n,d] = proj₂ div ------------------------------------------------------------------------ -- Properties of _/_ ------------------------------------------------------------------------ ↥-/ : ∀ i n .{{_ : ℕ.NonZero n}} → ↥ (i / n) ℤ.* gcd i (+ n) ≡ i ↥-/ (+ m) n = ↥-normalize m n ↥-/ -[1+ m ] n = begin-equality ↥ (- norm) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↥-neg norm) ⟩ ℤ.- (↥ norm) ℤ.* + g ≡⟨ sym (ℤ.neg-distribˡ-* (↥ norm) (+ g)) ⟩ ℤ.- (↥ norm ℤ.* + g) ≡⟨ cong (ℤ.-_) (↥-normalize (suc m) n) ⟩ Sign.- ◃ suc m ≡⟨⟩ -[1+ m ] ∎ where open ℤ.≤-Reasoning g = ℕ.gcd (suc m) n norm = normalize (suc m) n ↧-/ : ∀ i n .{{_ : ℕ.NonZero n}} → ↧ (i / n) ℤ.* gcd i (+ n) ≡ + n ↧-/ (+ m) n = ↧-normalize m n ↧-/ -[1+ m ] n = begin-equality ↧ (- norm) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↧-neg norm) ⟩ ↧ norm ℤ.* + g ≡⟨ ↧-normalize (suc m) n ⟩ + n ∎ where open ℤ.≤-Reasoning g = ℕ.gcd (suc m) n norm = normalize (suc m) n ↥p/↧p≡p : ∀ p → ↥ p / ↧ₙ p ≡ p ↥p/↧p≡p (mkℚ (+ n) d-1 prf) = normalize-coprime prf ↥p/↧p≡p (mkℚ -[1+ n ] d-1 prf) = cong (-_) (normalize-coprime prf) 0/n≡0 : ∀ n .{{_ : ℕ.NonZero n}} → 0ℤ / n ≡ 0ℚ 0/n≡0 n@(suc n-1) {{n≢0}} = mkℚ+-cong {{n/n≢0}} {c₂ = 0-cop-1} (ℕ.0/n≡0 (ℕ.gcd 0 n)) (ℕ.n/n≡1 n) where 0-cop-1 = C.sym (C.1-coprimeTo 0) n/n≢0 = ℕ.>-nonZero (subst (ℕ._> 0) (sym (ℕ.n/n≡1 n)) (ℕ.z<s)) /-cong : ∀ {p₁ q₁ p₂ q₂} .{{_ : ℕ.NonZero q₁}} .{{_ : ℕ.NonZero q₂}} → p₁ ≡ p₂ → q₁ ≡ q₂ → p₁ / q₁ ≡ p₂ / q₂ /-cong {+ n} refl = normalize-cong {n} refl /-cong { -[1+ n ]} refl = cong -_ ∘′ normalize-cong {suc n} refl private /-injective-≃-helper : ∀ {m n c d} .{{_ : ℕ.NonZero c}} .{{_ : ℕ.NonZero d}} → - normalize (suc m) c ≡ normalize n d → mkℚᵘ -[1+ m ] (ℕ.pred c) ≃ᵘ mkℚᵘ (+ n) (ℕ.pred d) /-injective-≃-helper {m} {n} {c} {d} -norm≡norm = contradiction (sym -norm≡norm) (nonNeg≢neg (normalize n d) (- normalize (suc m) c)) where instance _ : NonNegative (normalize n d) _ = normalize-nonNeg n d _ : Negative (- normalize (suc m) c) _ = neg-pos {normalize (suc m) c} (normalize-pos (suc m) c) /-injective-≃ : ∀ p q → ↥ᵘ p / ↧ₙᵘ p ≡ ↥ᵘ q / ↧ₙᵘ q → p ≃ᵘ q /-injective-≃ (mkℚᵘ (+ m) c-1) (mkℚᵘ (+ n) d-1) eq = *≡* (cong (Sign.+ ◃_) (normalize-injective-≃ m n _ _ eq)) /-injective-≃ (mkℚᵘ (+ m) c-1) (mkℚᵘ -[1+ n ] d-1) eq = ℚᵘ.≃-sym (/-injective-≃-helper (sym eq)) /-injective-≃ (mkℚᵘ -[1+ m ] c-1) (mkℚᵘ (+ n) d-1) eq = /-injective-≃-helper eq /-injective-≃ (mkℚᵘ -[1+ m ] c-1) (mkℚᵘ -[1+ n ] d-1) eq = *≡* (cong (Sign.- ◃_) (normalize-injective-≃ (suc m) (suc n) _ _ (neg-injective eq))) ------------------------------------------------------------------------ -- Properties of toℚ/fromℚ ------------------------------------------------------------------------ ↥ᵘ-toℚᵘ : ∀ p → ↥ᵘ (toℚᵘ p) ≡ ↥ p ↥ᵘ-toℚᵘ p@record{} = refl ↧ᵘ-toℚᵘ : ∀ p → ↧ᵘ (toℚᵘ p) ≡ ↧ p ↧ᵘ-toℚᵘ p@record{} = refl toℚᵘ-injective : Injective _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-injective {x@record{}} {y@record{}} (*≡* eq) = ≃⇒≡ (*≡* eq) fromℚᵘ-injective : Injective _≃ᵘ_ _≡_ fromℚᵘ fromℚᵘ-injective {p@record{}} {q@record{}} = /-injective-≃ p q fromℚᵘ-toℚᵘ : ∀ p → fromℚᵘ (toℚᵘ p) ≡ p fromℚᵘ-toℚᵘ (mkℚ (+ n) d-1 c) = normalize-coprime c fromℚᵘ-toℚᵘ (mkℚ (-[1+ n ]) d-1 c) = cong (-_) (normalize-coprime c) toℚᵘ-fromℚᵘ : ∀ p → toℚᵘ (fromℚᵘ p) ≃ᵘ p toℚᵘ-fromℚᵘ p = fromℚᵘ-injective (fromℚᵘ-toℚᵘ (fromℚᵘ p)) toℚᵘ-cong : Congruent _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-cong refl = *≡* refl fromℚᵘ-cong : Congruent _≃ᵘ_ _≡_ fromℚᵘ fromℚᵘ-cong {p} {q} p≃q = toℚᵘ-injective (begin-equality toℚᵘ (fromℚᵘ p) ≃⟨ toℚᵘ-fromℚᵘ p ⟩ p ≃⟨ p≃q ⟩ q ≃⟨ toℚᵘ-fromℚᵘ q ⟨ toℚᵘ (fromℚᵘ q) ∎) where open ℚᵘ.≤-Reasoning toℚᵘ-isRelHomomorphism : IsRelHomomorphism _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-isRelHomomorphism = record { cong = toℚᵘ-cong } toℚᵘ-isRelMonomorphism : IsRelMonomorphism _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-isRelMonomorphism = record { isHomomorphism = toℚᵘ-isRelHomomorphism ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ drop-*≤* : p ≤ q → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) drop-*≤* (*≤* pq≤qp) = pq≤qp ------------------------------------------------------------------------ -- toℚᵘ is a isomorphism toℚᵘ-mono-≤ : p ≤ q → toℚᵘ p ≤ᵘ toℚᵘ q toℚᵘ-mono-≤ {p@record{}} {q@record{}} (*≤* p≤q) = *≤* p≤q toℚᵘ-cancel-≤ : toℚᵘ p ≤ᵘ toℚᵘ q → p ≤ q toℚᵘ-cancel-≤ {p@record{}} {q@record{}} (*≤* p≤q) = *≤* p≤q toℚᵘ-isOrderHomomorphism-≤ : IsOrderHomomorphism _≡_ _≃ᵘ_ _≤_ _≤ᵘ_ toℚᵘ toℚᵘ-isOrderHomomorphism-≤ = record { cong = toℚᵘ-cong ; mono = toℚᵘ-mono-≤ } toℚᵘ-isOrderMonomorphism-≤ : IsOrderMonomorphism _≡_ _≃ᵘ_ _≤_ _≤ᵘ_ toℚᵘ toℚᵘ-isOrderMonomorphism-≤ = record { isOrderHomomorphism = toℚᵘ-isOrderHomomorphism-≤ ; injective = toℚᵘ-injective ; cancel = toℚᵘ-cancel-≤ } ------------------------------------------------------------------------ -- Relational properties private module ≤-Monomorphism = OrderMonomorphisms toℚᵘ-isOrderMonomorphism-≤ ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive refl = *≤* ℤ.≤-refl ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-trans : Transitive _≤_ ≤-trans = ≤-Monomorphism.trans ℚᵘ.≤-trans ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym (*≤* le₁) (*≤* le₂) = ≃⇒≡ (*≡* (ℤ.≤-antisym le₁ le₂)) ≤-total : Total _≤_ ≤-total p q = [ inj₁ ∘ *≤* , inj₂ ∘ *≤* ]′ (ℤ.≤-total (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p)) infix 4 _≤?_ _≥?_ _≤?_ : Decidable _≤_ p ≤? q = Dec.map′ *≤* drop-*≤* (↥ p ℤ.* ↧ q ℤ.≤? ↥ q ℤ.* ↧ p) _≥?_ : Decidable _≥_ _≥?_ = flip _≤?_ ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant (*≤* p≤q₁) (*≤* p≤q₂) = cong *≤* (ℤ.≤-irrelevant p≤q₁ p≤q₂) ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isTotalPreorder : IsTotalPreorder _≡_ _≤_ ≤-isTotalPreorder = record { isPreorder = ≤-isPreorder ; total = ≤-total } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-totalPreorder : TotalPreorder 0ℓ 0ℓ 0ℓ ≤-totalPreorder = record { isTotalPreorder = ≤-isTotalPreorder } ≤-decTotalOrder : DecTotalOrder _ _ _ ≤-decTotalOrder = record { Carrier = ℚ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ drop-*<* : p < q → (↥ p ℤ.* ↧ q) ℤ.< (↥ q ℤ.* ↧ p) drop-*<* (*<* pq<qp) = pq<qp ------------------------------------------------------------------------ -- toℚᵘ is a isomorphism toℚᵘ-mono-< : p < q → toℚᵘ p <ᵘ toℚᵘ q toℚᵘ-mono-< {p@record{}} {q@record{}} (*<* p<q) = *<* p<q toℚᵘ-cancel-< : toℚᵘ p <ᵘ toℚᵘ q → p < q toℚᵘ-cancel-< {p@record{}} {q@record{}} (*<* p<q) = *<* p<q toℚᵘ-isOrderHomomorphism-< : IsOrderHomomorphism _≡_ _≃ᵘ_ _<_ _<ᵘ_ toℚᵘ toℚᵘ-isOrderHomomorphism-< = record { cong = toℚᵘ-cong ; mono = toℚᵘ-mono-< } toℚᵘ-isOrderMonomorphism-< : IsOrderMonomorphism _≡_ _≃ᵘ_ _<_ _<ᵘ_ toℚᵘ toℚᵘ-isOrderMonomorphism-< = record { isOrderHomomorphism = toℚᵘ-isOrderHomomorphism-< ; injective = toℚᵘ-injective ; cancel = toℚᵘ-cancel-< } ------------------------------------------------------------------------ -- Relational properties <⇒≤ : _<_ ⇒ _≤_ <⇒≤ (*<* p<q) = *≤* (ℤ.<⇒≤ p<q) ≮⇒≥ : _≮_ ⇒ _≥_ ≮⇒≥ {p} {q} p≮q = *≤* (ℤ.≮⇒≥ (p≮q ∘ *<*)) ≰⇒> : _≰_ ⇒ _>_ ≰⇒> {p} {q} p≰q = *<* (ℤ.≰⇒> (p≰q ∘ *≤*)) <⇒≢ : _<_ ⇒ _≢_ <⇒≢ {p} {q} (*<* p<q) = ℤ.<⇒≢ p<q ∘ drop-*≡* ∘ ≡⇒≃ <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl (*<* p<p) = ℤ.<-irrefl refl p<p <-asym : Asymmetric _<_ <-asym (*<* p<q) (*<* q<p) = ℤ.<-asym p<q q<p <-dense : Dense _<_ <-dense {p} {q} p<q = let m , p<ᵘm , m<ᵘq = ℚᵘ.<-dense (toℚᵘ-mono-< p<q) m≃m : m ≃ᵘ toℚᵘ (fromℚᵘ m) m≃m = ℚᵘ.≃-sym (toℚᵘ-fromℚᵘ m) p<m : p < fromℚᵘ m p<m = toℚᵘ-cancel-< (ℚᵘ.<-respʳ-≃ m≃m p<ᵘm) m<q : fromℚᵘ m < q m<q = toℚᵘ-cancel-< (ℚᵘ.<-respˡ-≃ m≃m m<ᵘq) in fromℚᵘ m , p<m , m<q <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans {p} {q} {r} (*<* p<q) (*≤* q≤r) = *<* (ℤ.*-cancelʳ-<-nonNeg _ (begin-strict let n₁ = ↥ p; n₂ = ↥ q; n₃ = ↥ r; sd₁ = ↧ p; sd₂ = ↧ q; sd₃ = ↧ r in (n₁ ℤ.* sd₃) ℤ.* sd₂ ≡⟨ ℤ.*-assoc n₁ sd₃ sd₂ ⟩ n₁ ℤ.* (sd₃ ℤ.* sd₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm sd₃ sd₂) ⟩ n₁ ℤ.* (sd₂ ℤ.* sd₃) ≡⟨ sym (ℤ.*-assoc n₁ sd₂ sd₃) ⟩ (n₁ ℤ.* sd₂) ℤ.* sd₃ <⟨ ℤ.*-monoʳ-<-pos (↧ r) p<q ⟩ (n₂ ℤ.* sd₁) ℤ.* sd₃ ≡⟨ cong (ℤ._* sd₃) (ℤ.*-comm n₂ sd₁) ⟩ (sd₁ ℤ.* n₂) ℤ.* sd₃ ≡⟨ ℤ.*-assoc sd₁ n₂ sd₃ ⟩ sd₁ ℤ.* (n₂ ℤ.* sd₃) ≤⟨ ℤ.*-monoˡ-≤-nonNeg (↧ p) q≤r ⟩ sd₁ ℤ.* (n₃ ℤ.* sd₂) ≡⟨ sym (ℤ.*-assoc sd₁ n₃ sd₂) ⟩ (sd₁ ℤ.* n₃) ℤ.* sd₂ ≡⟨ cong (ℤ._* sd₂) (ℤ.*-comm sd₁ n₃) ⟩ (n₃ ℤ.* sd₁) ℤ.* sd₂ ∎)) where open ℤ.≤-Reasoning ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans {p} {q} {r} (*≤* p≤q) (*<* q<r) = *<* (ℤ.*-cancelʳ-<-nonNeg _ (begin-strict let n₁ = ↥ p; n₂ = ↥ q; n₃ = ↥ r; sd₁ = ↧ p; sd₂ = ↧ q; sd₃ = ↧ r in (n₁ ℤ.* sd₃) ℤ.* sd₂ ≡⟨ ℤ.*-assoc n₁ sd₃ sd₂ ⟩ n₁ ℤ.* (sd₃ ℤ.* sd₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm sd₃ sd₂) ⟩ n₁ ℤ.* (sd₂ ℤ.* sd₃) ≡⟨ sym (ℤ.*-assoc n₁ sd₂ sd₃) ⟩ (n₁ ℤ.* sd₂) ℤ.* sd₃ ≤⟨ ℤ.*-monoʳ-≤-nonNeg (↧ r) p≤q ⟩ (n₂ ℤ.* sd₁) ℤ.* sd₃ ≡⟨ cong (ℤ._* sd₃) (ℤ.*-comm n₂ sd₁) ⟩ (sd₁ ℤ.* n₂) ℤ.* sd₃ ≡⟨ ℤ.*-assoc sd₁ n₂ sd₃ ⟩ sd₁ ℤ.* (n₂ ℤ.* sd₃) <⟨ ℤ.*-monoˡ-<-pos (↧ p) q<r ⟩ sd₁ ℤ.* (n₃ ℤ.* sd₂) ≡⟨ sym (ℤ.*-assoc sd₁ n₃ sd₂) ⟩ (sd₁ ℤ.* n₃) ℤ.* sd₂ ≡⟨ cong (ℤ._* sd₂) (ℤ.*-comm sd₁ n₃) ⟩ (n₃ ℤ.* sd₁) ℤ.* sd₂ ∎)) where open ℤ.≤-Reasoning <-trans : Transitive _<_ <-trans p<q = ≤-<-trans (<⇒≤ p<q) infix 4 _<?_ _>?_ _<?_ : Decidable _<_ p <? q = Dec.map′ *<* drop-*<* ((↥ p ℤ.* ↧ q) ℤ.<? (↥ q ℤ.* ↧ p)) _>?_ : Decidable _>_ _>?_ = flip _<?_ <-cmp : Trichotomous _≡_ _<_ <-cmp p q with ℤ.<-cmp (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p) ... | tri< < ≢ ≯ = tri< (*<* <) (≢ ∘ drop-*≡* ∘ ≡⇒≃) (≯ ∘ drop-*<*) ... | tri≈ ≮ ≡ ≯ = tri≈ (≮ ∘ drop-*<*) (≃⇒≡ (*≡* ≡)) (≯ ∘ drop-*<*) ... | tri> ≮ ≢ > = tri> (≮ ∘ drop-*<*) (≢ ∘ drop-*≡* ∘ ≡⇒≃) (*<* >) <-irrelevant : Irrelevant _<_ <-irrelevant (*<* p<q₁) (*<* p<q₂) = cong *<* (ℤ.<-irrelevant p<q₁ p<q₂) <-respʳ-≡ : _<_ Respectsʳ _≡_ <-respʳ-≡ = subst (_ <_) <-respˡ-≡ : _<_ Respectsˡ _≡_ <-respˡ-≡ = subst (_< _) <-resp-≡ : _<_ Respects₂ _≡_ <-resp-≡ = <-respʳ-≡ , <-respˡ-≡ ------------------------------------------------------------------------ -- Structures <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp-≡ } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isStrictPartialOrder = <-isStrictPartialOrder ; compare = <-cmp } <-isDenseLinearOrder : IsDenseLinearOrder _≡_ _<_ <-isDenseLinearOrder = record { isStrictTotalOrder = <-isStrictTotalOrder ; dense = <-dense } ------------------------------------------------------------------------ -- Bundles <-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } <-denseLinearOrder : DenseLinearOrder 0ℓ 0ℓ 0ℓ <-denseLinearOrder = record { isDenseLinearOrder = <-isDenseLinearOrder } ------------------------------------------------------------------------ -- A specialised module for reasoning about the _≤_ and _<_ relations ------------------------------------------------------------------------ module ≤-Reasoning where import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-asym <-trans (resp₂ _<_) <⇒≤ <-≤-trans ≤-<-trans as Triple open Triple public hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨) ≃-go : Trans _≃_ _IsRelatedTo_ _IsRelatedTo_ ≃-go = Triple.≈-go ∘′ ≃⇒≡ open ≃-syntax _IsRelatedTo_ _IsRelatedTo_ ≃-go (λ {x y} → ≃-sym {x} {y}) public ------------------------------------------------------------------------ -- Properties of Positive/NonPositive/Negative/NonNegative and _≤_/_<_ positive⁻¹ : ∀ p → .{{Positive p}} → p > 0ℚ positive⁻¹ p = toℚᵘ-cancel-< (ℚᵘ.positive⁻¹ (toℚᵘ p)) nonNegative⁻¹ : ∀ p → .{{NonNegative p}} → p ≥ 0ℚ nonNegative⁻¹ p = toℚᵘ-cancel-≤ (ℚᵘ.nonNegative⁻¹ (toℚᵘ p)) negative⁻¹ : ∀ p → .{{Negative p}} → p < 0ℚ negative⁻¹ p = toℚᵘ-cancel-< (ℚᵘ.negative⁻¹ (toℚᵘ p)) nonPositive⁻¹ : ∀ p → .{{NonPositive p}} → p ≤ 0ℚ nonPositive⁻¹ p = toℚᵘ-cancel-≤ (ℚᵘ.nonPositive⁻¹ (toℚᵘ p)) neg<pos : ∀ p q → .{{Negative p}} → .{{Positive q}} → p < q neg<pos p q = toℚᵘ-cancel-< (ℚᵘ.neg<pos (toℚᵘ p) (toℚᵘ q)) ------------------------------------------------------------------------ -- Properties of -_ and _≤_/_<_ neg-antimono-< : -_ Preserves _<_ ⟶ _>_ neg-antimono-< {mkℚ -[1+ _ ] _ _} {mkℚ -[1+ _ ] _ _} (*<* (ℤ.-<- n<m)) = *<* (ℤ.+<+ (ℕ.s<s n<m)) neg-antimono-< {mkℚ -[1+ _ ] _ _} {mkℚ +0 _ _} (*<* ℤ.-<+) = *<* (ℤ.+<+ ℕ.z<s) neg-antimono-< {mkℚ -[1+ _ ] _ _} {mkℚ +[1+ _ ] _ _} (*<* ℤ.-<+) = *<* ℤ.-<+ neg-antimono-< {mkℚ +0 _ _} {mkℚ +0 _ _} (*<* (ℤ.+<+ m<n)) = *<* (ℤ.+<+ m<n) neg-antimono-< {mkℚ +0 _ _} {mkℚ +[1+ _ ] _ _} (*<* (ℤ.+<+ m<n)) = *<* ℤ.-<+ neg-antimono-< {mkℚ +[1+ _ ] _ _} {mkℚ +0 _ _} (*<* (ℤ.+<+ ())) neg-antimono-< {mkℚ +[1+ _ ] _ _} {mkℚ +[1+ _ ] _ _} (*<* (ℤ.+<+ (ℕ.s<s m<n))) = *<* (ℤ.-<- m<n) neg-antimono-≤ : -_ Preserves _≤_ ⟶ _≥_ neg-antimono-≤ {mkℚ -[1+ _ ] _ _} {mkℚ -[1+ _ ] _ _} (*≤* (ℤ.-≤- n≤m)) = *≤* (ℤ.+≤+ (ℕ.s≤s n≤m)) neg-antimono-≤ {mkℚ -[1+ _ ] _ _} {mkℚ +0 _ _} (*≤* ℤ.-≤+) = *≤* (ℤ.+≤+ ℕ.z≤n) neg-antimono-≤ {mkℚ -[1+ _ ] _ _} {mkℚ +[1+ _ ] _ _} (*≤* ℤ.-≤+) = *≤* ℤ.-≤+ neg-antimono-≤ {mkℚ +0 _ _} {mkℚ +0 _ _} (*≤* (ℤ.+≤+ m≤n)) = *≤* (ℤ.+≤+ m≤n) neg-antimono-≤ {mkℚ +0 _ _} {mkℚ +[1+ _ ] _ _} (*≤* (ℤ.+≤+ m≤n)) = *≤* ℤ.-≤+ neg-antimono-≤ {mkℚ +[1+ _ ] _ _} {mkℚ +0 _ _} (*≤* (ℤ.+≤+ ())) neg-antimono-≤ {mkℚ +[1+ _ ] _ _} {mkℚ +[1+ _ ] _ _} (*≤* (ℤ.+≤+ (ℕ.s≤s m≤n))) = *≤* (ℤ.-≤- m≤n) ------------------------------------------------------------------------ -- Properties of _≤ᵇ_ ------------------------------------------------------------------------ ≤ᵇ⇒≤ : T (p ≤ᵇ q) → p ≤ q ≤ᵇ⇒≤ = *≤* ∘′ ℤ.≤ᵇ⇒≤ ≤⇒≤ᵇ : p ≤ q → T (p ≤ᵇ q) ≤⇒≤ᵇ = ℤ.≤⇒≤ᵇ ∘′ drop-*≤* ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ private ↥+ᵘ : ℚ → ℚ → ℤ ↥+ᵘ p q = ↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p ↧+ᵘ : ℚ → ℚ → ℤ ↧+ᵘ p q = ↧ p ℤ.* ↧ q +-nf : ℚ → ℚ → ℤ +-nf p q = gcd (↥+ᵘ p q) (↧+ᵘ p q) ↥-+ : ∀ p q → ↥ (p + q) ℤ.* +-nf p q ≡ ↥+ᵘ p q ↥-+ p@record{} q@record{} = ↥-/ (↥+ᵘ p q) (↧ₙ p ℕ.* ↧ₙ q) ↧-+ : ∀ p q → ↧ (p + q) ℤ.* +-nf p q ≡ ↧+ᵘ p q ↧-+ p@record{} q@record{} = ↧-/ (↥+ᵘ p q) (↧ₙ p ℕ.* ↧ₙ q) ------------------------------------------------------------------------ -- Monomorphic to unnormalised _+_ open Definitions ℚ ℚᵘ ℚᵘ._≃_ toℚᵘ-homo-+ : Homomorphic₂ toℚᵘ _+_ ℚᵘ._+_ toℚᵘ-homo-+ p@record{} q@record{} with +-nf p q ℤ.≟ 0ℤ ... | yes nf[p,q]≡0 = *≡* $ begin ↥ᵘ (toℚᵘ (p + q)) ℤ.* ↧+ᵘ p q ≡⟨ cong (ℤ._* ↧+ᵘ p q) (↥ᵘ-toℚᵘ (p + q)) ⟩ ↥ (p + q) ℤ.* ↧+ᵘ p q ≡⟨ cong (ℤ._* ↧+ᵘ p q) eq ⟩ 0ℤ ℤ.* ↧+ᵘ p q ≡⟨⟩ 0ℤ ℤ.* ↧ (p + q) ≡⟨ cong (ℤ._* ↧ (p + q)) (sym eq2) ⟩ ↥+ᵘ p q ℤ.* ↧ (p + q) ≡⟨ cong (↥+ᵘ p q ℤ.*_) (sym (↧ᵘ-toℚᵘ (p + q))) ⟩ ↥+ᵘ p q ℤ.* ↧ᵘ (toℚᵘ (p + q)) ∎ where open ≡-Reasoning eq2 : ↥+ᵘ p q ≡ 0ℤ eq2 = gcd[i,j]≡0⇒i≡0 (↥+ᵘ p q) (↧+ᵘ p q) nf[p,q]≡0 eq : ↥ (p + q) ≡ 0ℤ eq rewrite eq2 = cong ↥_ (0/n≡0 (↧ₙ p ℕ.* ↧ₙ q)) ... | no nf[p,q]≢0 = *≡* (ℤ.*-cancelʳ-≡ _ _ (+-nf p q) {{ℤ.≢-nonZero nf[p,q]≢0}} $ begin (↥ᵘ (toℚᵘ (p + q))) ℤ.* ↧+ᵘ p q ℤ.* +-nf p q ≡⟨ cong (λ v → v ℤ.* ↧+ᵘ p q ℤ.* +-nf p q) (↥ᵘ-toℚᵘ (p + q)) ⟩ ↥ (p + q) ℤ.* ↧+ᵘ p q ℤ.* +-nf p q ≡⟨ xy∙z≈xz∙y (↥ (p + q)) _ _ ⟩ ↥ (p + q) ℤ.* +-nf p q ℤ.* ↧+ᵘ p q ≡⟨ cong (ℤ._* ↧+ᵘ p q) (↥-+ p q) ⟩ ↥+ᵘ p q ℤ.* ↧+ᵘ p q ≡⟨ cong (↥+ᵘ p q ℤ.*_) (sym (↧-+ p q)) ⟩ ↥+ᵘ p q ℤ.* (↧ (p + q) ℤ.* +-nf p q) ≡⟨ x∙yz≈xy∙z (↥+ᵘ p q) _ _ ⟩ ↥+ᵘ p q ℤ.* ↧ (p + q) ℤ.* +-nf p q ≡⟨ cong (λ v → ↥+ᵘ p q ℤ.* v ℤ.* +-nf p q) (↧ᵘ-toℚᵘ (p + q)) ⟨ ↥+ᵘ p q ℤ.* ↧ᵘ (toℚᵘ (p + q)) ℤ.* +-nf p q ∎) where open ≡-Reasoning; open CommSemigroupProperties ℤ.*-commutativeSemigroup toℚᵘ-isMagmaHomomorphism-+ : IsMagmaHomomorphism +-rawMagma ℚᵘ.+-rawMagma toℚᵘ toℚᵘ-isMagmaHomomorphism-+ = record { isRelHomomorphism = toℚᵘ-isRelHomomorphism ; homo = toℚᵘ-homo-+ } toℚᵘ-isMonoidHomomorphism-+ : IsMonoidHomomorphism +-0-rawMonoid ℚᵘ.+-0-rawMonoid toℚᵘ toℚᵘ-isMonoidHomomorphism-+ = record { isMagmaHomomorphism = toℚᵘ-isMagmaHomomorphism-+ ; ε-homo = ℚᵘ.≃-refl } toℚᵘ-isMonoidMonomorphism-+ : IsMonoidMonomorphism +-0-rawMonoid ℚᵘ.+-0-rawMonoid toℚᵘ toℚᵘ-isMonoidMonomorphism-+ = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-+ ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Monomorphic to unnormalised -_ toℚᵘ-homo‿- : Homomorphic₁ toℚᵘ (-_) (ℚᵘ.-_) toℚᵘ-homo‿- (mkℚ +0 _ _) = *≡* refl toℚᵘ-homo‿- (mkℚ +[1+ _ ] _ _) = *≡* refl toℚᵘ-homo‿- (mkℚ -[1+ _ ] _ _) = *≡* refl toℚᵘ-isGroupHomomorphism-+ : IsGroupHomomorphism +-0-rawGroup ℚᵘ.+-0-rawGroup toℚᵘ toℚᵘ-isGroupHomomorphism-+ = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-+ ; ⁻¹-homo = toℚᵘ-homo‿- } toℚᵘ-isGroupMonomorphism-+ : IsGroupMonomorphism +-0-rawGroup ℚᵘ.+-0-rawGroup toℚᵘ toℚᵘ-isGroupMonomorphism-+ = record { isGroupHomomorphism = toℚᵘ-isGroupHomomorphism-+ ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Algebraic properties private module +-Monomorphism = GroupMonomorphisms toℚᵘ-isGroupMonomorphism-+ +-assoc : Associative _+_ +-assoc = +-Monomorphism.assoc ℚᵘ.+-isMagma ℚᵘ.+-assoc +-comm : Commutative _+_ +-comm = +-Monomorphism.comm ℚᵘ.+-isMagma ℚᵘ.+-comm +-identityˡ : LeftIdentity 0ℚ _+_ +-identityˡ = +-Monomorphism.identityˡ ℚᵘ.+-isMagma ℚᵘ.+-identityˡ +-identityʳ : RightIdentity 0ℚ _+_ +-identityʳ = +-Monomorphism.identityʳ ℚᵘ.+-isMagma ℚᵘ.+-identityʳ +-identity : Identity 0ℚ _+_ +-identity = +-identityˡ , +-identityʳ +-inverseˡ : LeftInverse 0ℚ -_ _+_ +-inverseˡ = +-Monomorphism.inverseˡ ℚᵘ.+-isMagma ℚᵘ.+-inverseˡ +-inverseʳ : RightInverse 0ℚ -_ _+_ +-inverseʳ = +-Monomorphism.inverseʳ ℚᵘ.+-isMagma ℚᵘ.+-inverseʳ +-inverse : Inverse 0ℚ -_ _+_ +-inverse = +-Monomorphism.inverse ℚᵘ.+-isMagma ℚᵘ.+-inverse -‿cong : Congruent₁ (-_) -‿cong = +-Monomorphism.⁻¹-cong ℚᵘ.+-isMagma ℚᵘ.-‿cong neg-distrib-+ : ∀ p q → - (p + q) ≡ (- p) + (- q) neg-distrib-+ = +-Monomorphism.⁻¹-distrib-∙ ℚᵘ.+-0-isAbelianGroup (ℚᵘ.≃-reflexive ∘₂ ℚᵘ.neg-distrib-+) ------------------------------------------------------------------------ -- Structures +-isMagma : IsMagma _+_ +-isMagma = +-Monomorphism.isMagma ℚᵘ.+-isMagma +-isSemigroup : IsSemigroup _+_ +-isSemigroup = +-Monomorphism.isSemigroup ℚᵘ.+-isSemigroup +-0-isMonoid : IsMonoid _+_ 0ℚ +-0-isMonoid = +-Monomorphism.isMonoid ℚᵘ.+-0-isMonoid +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0ℚ +-0-isCommutativeMonoid = +-Monomorphism.isCommutativeMonoid ℚᵘ.+-0-isCommutativeMonoid +-0-isGroup : IsGroup _+_ 0ℚ (-_) +-0-isGroup = +-Monomorphism.isGroup ℚᵘ.+-0-isGroup +-0-isAbelianGroup : IsAbelianGroup _+_ 0ℚ (-_) +-0-isAbelianGroup = +-Monomorphism.isAbelianGroup ℚᵘ.+-0-isAbelianGroup ------------------------------------------------------------------------ -- Packages +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-group : Group 0ℓ 0ℓ +-0-group = record { isGroup = +-0-isGroup } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-0-isAbelianGroup } ------------------------------------------------------------------------ -- Properties of _+_ and _≤_ +-mono-≤ : Monotonic₂ _≤_ _≤_ _≤_ _+_ +-mono-≤ {p} {q} {r} {s} p≤q r≤s = toℚᵘ-cancel-≤ (begin toℚᵘ(p + r) ≃⟨ toℚᵘ-homo-+ p r ⟩ toℚᵘ(p) ℚᵘ.+ toℚᵘ(r) ≤⟨ ℚᵘ.+-mono-≤ (toℚᵘ-mono-≤ p≤q) (toℚᵘ-mono-≤ r≤s) ⟩ toℚᵘ(q) ℚᵘ.+ toℚᵘ(s) ≃⟨ ℚᵘ.≃-sym (toℚᵘ-homo-+ q s) ⟩ toℚᵘ(q + s) ∎) where open ℚᵘ.≤-Reasoning +-monoˡ-≤ : RightMonotonic _≤_ _≤_ _+_ +-monoˡ-≤ r p≤q = +-mono-≤ p≤q (≤-refl {r}) +-monoʳ-≤ : LeftMonotonic _≤_ _≤_ _+_ +-monoʳ-≤ r p≤q = +-mono-≤ (≤-refl {r}) p≤q nonNeg+nonNeg⇒nonNeg : ∀ p .{{_ : NonNegative p}} q .{{_ : NonNegative q}} → NonNegative (p + q) nonNeg+nonNeg⇒nonNeg p q = nonNegative $ +-mono-≤ (nonNegative⁻¹ p) (nonNegative⁻¹ q) nonPos+nonPos⇒nonPos : ∀ p .{{_ : NonPositive p}} q .{{_ : NonPositive q}} → NonPositive (p + q) nonPos+nonPos⇒nonPos p q = nonPositive $ +-mono-≤ (nonPositive⁻¹ p) (nonPositive⁻¹ q) ------------------------------------------------------------------------ -- Properties of _+_ and _<_ +-mono-<-≤ : Monotonic₂ _<_ _≤_ _<_ _+_ +-mono-<-≤ {p} {q} {r} {s} p<q r≤s = toℚᵘ-cancel-< (begin-strict toℚᵘ(p + r) ≃⟨ toℚᵘ-homo-+ p r ⟩ toℚᵘ(p) ℚᵘ.+ toℚᵘ(r) <⟨ ℚᵘ.+-mono-<-≤ (toℚᵘ-mono-< p<q) (toℚᵘ-mono-≤ r≤s) ⟩ toℚᵘ(q) ℚᵘ.+ toℚᵘ(s) ≃⟨ ℚᵘ.≃-sym (toℚᵘ-homo-+ q s) ⟩ toℚᵘ(q + s) ∎) where open ℚᵘ.≤-Reasoning +-mono-≤-< : Monotonic₂ _≤_ _<_ _<_ _+_ +-mono-≤-< {p} {q} {r} {s} p≤q r<s rewrite +-comm p r | +-comm q s = +-mono-<-≤ r<s p≤q +-mono-< : Monotonic₂ _<_ _<_ _<_ _+_ +-mono-< {p} {q} {r} {s} p<q r<s = <-trans (+-mono-<-≤ p<q (≤-refl {r})) (+-mono-≤-< (≤-refl {q}) r<s) +-monoˡ-< : RightMonotonic _<_ _<_ _+_ +-monoˡ-< r p<q = +-mono-<-≤ p<q (≤-refl {r}) +-monoʳ-< : LeftMonotonic _<_ _<_ _+_ +-monoʳ-< r p<q = +-mono-≤-< (≤-refl {r}) p<q pos+nonNeg⇒pos : ∀ p .{{_ : Positive p}} q .{{_ : NonNegative q}} → Positive (p + q) pos+nonNeg⇒pos p q = positive $ +-mono-<-≤ (positive⁻¹ p) (nonNegative⁻¹ q) nonNeg+pos⇒pos : ∀ p .{{_ : NonNegative p}} q .{{_ : Positive q}} → Positive (p + q) nonNeg+pos⇒pos p q = positive $ +-mono-≤-< (nonNegative⁻¹ p) (positive⁻¹ q) pos+pos⇒pos : ∀ p .{{_ : Positive p}} q .{{_ : Positive q}} → Positive (p + q) pos+pos⇒pos p q = positive $ +-mono-< (positive⁻¹ p) (positive⁻¹ q) neg+nonPos⇒neg : ∀ p .{{_ : Negative p}} q .{{_ : NonPositive q}} → Negative (p + q) neg+nonPos⇒neg p q = negative $ +-mono-<-≤ (negative⁻¹ p) (nonPositive⁻¹ q) nonPos+neg⇒neg : ∀ p .{{_ : NonPositive p}} q .{{_ : Negative q}} → Negative (p + q) nonPos+neg⇒neg p q = negative $ +-mono-≤-< (nonPositive⁻¹ p) (negative⁻¹ q) neg+neg⇒neg : ∀ p .{{_ : Negative p}} q .{{_ : Negative q}} → Negative (p + q) neg+neg⇒neg p q = negative $ +-mono-< (negative⁻¹ p) (negative⁻¹ q) ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ private *-nf : ℚ → ℚ → ℤ *-nf p q = gcd (↥ p ℤ.* ↥ q) (↧ p ℤ.* ↧ q) ↥-* : ∀ p q → ↥ (p * q) ℤ.* *-nf p q ≡ ↥ p ℤ.* ↥ q ↥-* p@record{} q@record{} = ↥-/ (↥ p ℤ.* ↥ q) (↧ₙ p ℕ.* ↧ₙ q) ↧-* : ∀ p q → ↧ (p * q) ℤ.* *-nf p q ≡ ↧ p ℤ.* ↧ q ↧-* p@record{} q@record{} = ↧-/ (↥ p ℤ.* ↥ q) (↧ₙ p ℕ.* ↧ₙ q) ------------------------------------------------------------------------ -- Monomorphic to unnormalised _*_ toℚᵘ-homo-* : Homomorphic₂ toℚᵘ _*_ ℚᵘ._*_ toℚᵘ-homo-* p@record{} q@record{} with *-nf p q ℤ.≟ 0ℤ ... | yes nf[p,q]≡0 = *≡* $ begin ↥ᵘ (toℚᵘ (p * q)) ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong (ℤ._* (↧ p ℤ.* ↧ q)) (↥ᵘ-toℚᵘ (p * q)) ⟩ ↥ (p * q) ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong (ℤ._* (↧ p ℤ.* ↧ q)) eq ⟩ 0ℤ ℤ.* (↧ p ℤ.* ↧ q) ≡⟨⟩ 0ℤ ℤ.* ↧ (p * q) ≡⟨ cong (ℤ._* ↧ (p * q)) (sym eq2) ⟩ (↥ p ℤ.* ↥ q) ℤ.* ↧ (p * q) ≡⟨ cong ((↥ p ℤ.* ↥ q) ℤ.*_) (sym (↧ᵘ-toℚᵘ (p * q))) ⟩ (↥ p ℤ.* ↥ q) ℤ.* ↧ᵘ (toℚᵘ (p * q)) ∎ where open ≡-Reasoning eq2 : ↥ p ℤ.* ↥ q ≡ 0ℤ eq2 = gcd[i,j]≡0⇒i≡0 (↥ p ℤ.* ↥ q) (↧ p ℤ.* ↧ q) nf[p,q]≡0 eq : ↥ (p * q) ≡ 0ℤ eq rewrite eq2 = cong ↥_ (0/n≡0 (↧ₙ p ℕ.* ↧ₙ q)) ... | no nf[p,q]≢0 = *≡* (ℤ.*-cancelʳ-≡ _ _ (*-nf p q) {{ℤ.≢-nonZero nf[p,q]≢0}} $ begin ↥ᵘ (toℚᵘ (p * q)) ℤ.* (↧ p ℤ.* ↧ q) ℤ.* *-nf p q ≡⟨ cong (λ v → v ℤ.* (↧ p ℤ.* ↧ q) ℤ.* *-nf p q) (↥ᵘ-toℚᵘ (p * q)) ⟩ ↥ (p * q) ℤ.* (↧ p ℤ.* ↧ q) ℤ.* *-nf p q ≡⟨ xy∙z≈xz∙y (↥ (p * q)) _ _ ⟩ ↥ (p * q) ℤ.* *-nf p q ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong (ℤ._* (↧ p ℤ.* ↧ q)) (↥-* p q) ⟩ (↥ p ℤ.* ↥ q) ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong ((↥ p ℤ.* ↥ q) ℤ.*_) (sym (↧-* p q)) ⟩ (↥ p ℤ.* ↥ q) ℤ.* (↧ (p * q) ℤ.* *-nf p q) ≡⟨ x∙yz≈xy∙z (↥ p ℤ.* ↥ q) _ _ ⟩ (↥ p ℤ.* ↥ q) ℤ.* ↧ (p * q) ℤ.* *-nf p q ≡⟨ cong (λ v → (↥ p ℤ.* ↥ q) ℤ.* v ℤ.* *-nf p q) (↧ᵘ-toℚᵘ (p * q)) ⟨ (↥ p ℤ.* ↥ q) ℤ.* ↧ᵘ (toℚᵘ (p * q)) ℤ.* *-nf p q ∎) where open ≡-Reasoning; open CommSemigroupProperties ℤ.*-commutativeSemigroup toℚᵘ-homo-1/ : ∀ p .{{_ : NonZero p}} → toℚᵘ (1/ p) ℚᵘ.≃ (ℚᵘ.1/ toℚᵘ p) toℚᵘ-homo-1/ (mkℚ +[1+ _ ] _ _) = ℚᵘ.≃-refl toℚᵘ-homo-1/ (mkℚ -[1+ _ ] _ _) = ℚᵘ.≃-refl toℚᵘ-isMagmaHomomorphism-* : IsMagmaHomomorphism *-rawMagma ℚᵘ.*-rawMagma toℚᵘ toℚᵘ-isMagmaHomomorphism-* = record { isRelHomomorphism = toℚᵘ-isRelHomomorphism ; homo = toℚᵘ-homo-* } toℚᵘ-isMonoidHomomorphism-* : IsMonoidHomomorphism *-1-rawMonoid ℚᵘ.*-1-rawMonoid toℚᵘ toℚᵘ-isMonoidHomomorphism-* = record { isMagmaHomomorphism = toℚᵘ-isMagmaHomomorphism-* ; ε-homo = ℚᵘ.≃-refl } toℚᵘ-isMonoidMonomorphism-* : IsMonoidMonomorphism *-1-rawMonoid ℚᵘ.*-1-rawMonoid toℚᵘ toℚᵘ-isMonoidMonomorphism-* = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-* ; injective = toℚᵘ-injective } toℚᵘ-isNearSemiringHomomorphism-+-* : IsNearSemiringHomomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isNearSemiringHomomorphism-+-* = record { +-isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-+ ; *-homo = toℚᵘ-homo-* } toℚᵘ-isNearSemiringMonomorphism-+-* : IsNearSemiringMonomorphism +-*-rawNearSemiring ℚᵘ.+-*-rawNearSemiring toℚᵘ toℚᵘ-isNearSemiringMonomorphism-+-* = record { isNearSemiringHomomorphism = toℚᵘ-isNearSemiringHomomorphism-+-* ; injective = toℚᵘ-injective } toℚᵘ-isSemiringHomomorphism-+-* : IsSemiringHomomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ toℚᵘ-isSemiringHomomorphism-+-* = record { isNearSemiringHomomorphism = toℚᵘ-isNearSemiringHomomorphism-+-* ; 1#-homo = ℚᵘ.≃-refl } toℚᵘ-isSemiringMonomorphism-+-* : IsSemiringMonomorphism +-*-rawSemiring ℚᵘ.+-*-rawSemiring toℚᵘ toℚᵘ-isSemiringMonomorphism-+-* = record { isSemiringHomomorphism = toℚᵘ-isSemiringHomomorphism-+-* ; injective = toℚᵘ-injective } toℚᵘ-isRingHomomorphism-+-* : IsRingHomomorphism +-*-rawRing ℚᵘ.+-*-rawRing toℚᵘ toℚᵘ-isRingHomomorphism-+-* = record { isSemiringHomomorphism = toℚᵘ-isSemiringHomomorphism-+-* ; -‿homo = toℚᵘ-homo‿- } toℚᵘ-isRingMonomorphism-+-* : IsRingMonomorphism +-*-rawRing ℚᵘ.+-*-rawRing toℚᵘ toℚᵘ-isRingMonomorphism-+-* = record { isRingHomomorphism = toℚᵘ-isRingHomomorphism-+-* ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Algebraic properties private module +-*-Monomorphism = RingMonomorphisms toℚᵘ-isRingMonomorphism-+-* *-assoc : Associative _*_ *-assoc = +-*-Monomorphism.*-assoc ℚᵘ.*-isMagma ℚᵘ.*-assoc *-comm : Commutative _*_ *-comm = +-*-Monomorphism.*-comm ℚᵘ.*-isMagma ℚᵘ.*-comm *-identityˡ : LeftIdentity 1ℚ _*_ *-identityˡ = +-*-Monomorphism.*-identityˡ ℚᵘ.*-isMagma ℚᵘ.*-identityˡ *-identityʳ : RightIdentity 1ℚ _*_ *-identityʳ = +-*-Monomorphism.*-identityʳ ℚᵘ.*-isMagma ℚᵘ.*-identityʳ *-identity : Identity 1ℚ _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero 0ℚ _*_ *-zeroˡ = +-*-Monomorphism.zeroˡ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-zeroˡ *-zeroʳ : RightZero 0ℚ _*_ *-zeroʳ = +-*-Monomorphism.zeroʳ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-zeroʳ *-zero : Zero 0ℚ _*_ *-zero = *-zeroˡ , *-zeroʳ *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = +-*-Monomorphism.distribˡ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-distribˡ-+ *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ = +-*-Monomorphism.distribʳ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-distribʳ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ *-inverseˡ : ∀ p .{{_ : NonZero p}} → (1/ p) * p ≡ 1ℚ *-inverseˡ p = toℚᵘ-injective (begin-equality toℚᵘ (1/ p * p) ≃⟨ toℚᵘ-homo-* (1/ p) p ⟩ toℚᵘ (1/ p) ℚᵘ.* toℚᵘ p ≃⟨ ℚᵘ.*-congʳ (toℚᵘ-homo-1/ p) ⟩ ℚᵘ.1/ (toℚᵘ p) ℚᵘ.* toℚᵘ p ≃⟨ ℚᵘ.*-inverseˡ (toℚᵘ p) ⟩ ℚᵘ.1ℚᵘ ∎) where open ℚᵘ.≤-Reasoning *-inverseʳ : ∀ p .{{_ : NonZero p}} → p * (1/ p) ≡ 1ℚ *-inverseʳ p = trans (*-comm p (1/ p)) (*-inverseˡ p) neg-distribˡ-* : ∀ p q → - (p * q) ≡ - p * q neg-distribˡ-* = +-*-Monomorphism.neg-distribˡ-* ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.neg-distribˡ-* neg-distribʳ-* : ∀ p q → - (p * q) ≡ p * - q neg-distribʳ-* = +-*-Monomorphism.neg-distribʳ-* ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.neg-distribʳ-* ------------------------------------------------------------------------ -- Structures *-isMagma : IsMagma _*_ *-isMagma = +-*-Monomorphism.*-isMagma ℚᵘ.*-isMagma *-isSemigroup : IsSemigroup _*_ *-isSemigroup = +-*-Monomorphism.*-isSemigroup ℚᵘ.*-isSemigroup *-1-isMonoid : IsMonoid _*_ 1ℚ *-1-isMonoid = +-*-Monomorphism.*-isMonoid ℚᵘ.*-1-isMonoid *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1ℚ *-1-isCommutativeMonoid = +-*-Monomorphism.*-isCommutativeMonoid ℚᵘ.*-1-isCommutativeMonoid +-*-isRing : IsRing _+_ _*_ -_ 0ℚ 1ℚ +-*-isRing = +-*-Monomorphism.isRing ℚᵘ.+-*-isRing +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0ℚ 1ℚ +-*-isCommutativeRing = +-*-Monomorphism.isCommutativeRing ℚᵘ.+-*-isCommutativeRing ------------------------------------------------------------------------ -- Packages *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } ------------------------------------------------------------------------ -- HeytingField structures and bundles module _ where open CommutativeRing +-*-commutativeRing using (+-group; zeroˡ; *-congʳ; isCommutativeRing) open GroupProperties +-group open DecSetoidProperties ≡-decSetoid #⇒invertible : p ≢ q → Invertible 1ℚ _*_ (p - q) #⇒invertible {p} {q} p≢q = let r = p - q in 1/ r , *-inverseˡ r , *-inverseʳ r where instance _ = ≢-nonZero (p≢q ∘ (x∙y⁻¹≈ε⇒x≈y p q)) invertible⇒# : Invertible 1ℚ _*_ (p - q) → p ≢ q invertible⇒# {p} {q} (1/[p-q] , _ , [p-q]/[p-q]≡1) p≡q = contradiction 1≡0 1≢0 where open ≈-Reasoning ≡-setoid 1≡0 : 1ℚ ≡ 0ℚ 1≡0 = begin 1ℚ ≈⟨ [p-q]/[p-q]≡1 ⟨ (p - q) * 1/[p-q] ≈⟨ *-congʳ (x≈y⇒x∙y⁻¹≈ε p≡q) ⟩ 0ℚ * 1/[p-q] ≈⟨ zeroˡ 1/[p-q] ⟩ 0ℚ ∎ isHeytingCommutativeRing : IsHeytingCommutativeRing _≡_ _≢_ _+_ _*_ -_ 0ℚ 1ℚ isHeytingCommutativeRing = record { isCommutativeRing = isCommutativeRing ; isApartnessRelation = ≉-isApartnessRelation ; #⇒invertible = #⇒invertible ; invertible⇒# = invertible⇒# } isHeytingField : IsHeytingField _≡_ _≢_ _+_ _*_ -_ 0ℚ 1ℚ isHeytingField = record { isHeytingCommutativeRing = isHeytingCommutativeRing ; tight = ≉-tight } heytingCommutativeRing : HeytingCommutativeRing 0ℓ 0ℓ 0ℓ heytingCommutativeRing = record { isHeytingCommutativeRing = isHeytingCommutativeRing } heytingField : HeytingField 0ℓ 0ℓ 0ℓ heytingField = record { isHeytingField = isHeytingField } ------------------------------------------------------------------------ -- Properties of _*_ and _≤_ *-cancelʳ-≤-pos : ∀ r .{{_ : Positive r}} → p * r ≤ q * r → p ≤ q *-cancelʳ-≤-pos {p} {q} r pr≤qr = toℚᵘ-cancel-≤ (ℚᵘ.*-cancelʳ-≤-pos (toℚᵘ r) (begin toℚᵘ p ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* p r ⟨ toℚᵘ (p * r) ≤⟨ toℚᵘ-mono-≤ pr≤qr ⟩ toℚᵘ (q * r) ≃⟨ toℚᵘ-homo-* q r ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r ∎)) where open ℚᵘ.≤-Reasoning *-cancelˡ-≤-pos : ∀ r .{{_ : Positive r}} → r * p ≤ r * q → p ≤ q *-cancelˡ-≤-pos {p} {q} r rewrite *-comm r p | *-comm r q = *-cancelʳ-≤-pos r *-monoʳ-≤-nonNeg : ∀ r .{{_ : NonNegative r}} → Monotonic₁ _≤_ _≤_ (_* r) *-monoʳ-≤-nonNeg r {p} {q} p≤q = toℚᵘ-cancel-≤ (begin toℚᵘ (p * r) ≃⟨ toℚᵘ-homo-* p r ⟩ toℚᵘ p ℚᵘ.* toℚᵘ r ≤⟨ ℚᵘ.*-monoˡ-≤-nonNeg (toℚᵘ r) (toℚᵘ-mono-≤ p≤q) ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* q r ⟨ toℚᵘ (q * r) ∎) where open ℚᵘ.≤-Reasoning *-monoˡ-≤-nonNeg : ∀ r .{{_ : NonNegative r}} → Monotonic₁ _≤_ _≤_ (r *_) *-monoˡ-≤-nonNeg r {p} {q} rewrite *-comm r p | *-comm r q = *-monoʳ-≤-nonNeg r *-monoʳ-≤-nonPos : ∀ r .{{_ : NonPositive r}} → Monotonic₁ _≤_ _≥_ (_* r) *-monoʳ-≤-nonPos r {p} {q} p≤q = toℚᵘ-cancel-≤ (begin toℚᵘ (q * r) ≃⟨ toℚᵘ-homo-* q r ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r ≤⟨ ℚᵘ.*-monoˡ-≤-nonPos (toℚᵘ r) (toℚᵘ-mono-≤ p≤q) ⟩ toℚᵘ p ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* p r ⟨ toℚᵘ (p * r) ∎) where open ℚᵘ.≤-Reasoning *-monoˡ-≤-nonPos : ∀ r .{{_ : NonPositive r}} → Monotonic₁ _≤_ _≥_ (r *_) *-monoˡ-≤-nonPos r {p} {q} rewrite *-comm r p | *-comm r q = *-monoʳ-≤-nonPos r *-cancelʳ-≤-neg : ∀ r .{{_ : Negative r}} → p * r ≤ q * r → p ≥ q *-cancelʳ-≤-neg {p} {q} r pr≤qr = toℚᵘ-cancel-≤ (ℚᵘ.*-cancelʳ-≤-neg _ (begin toℚᵘ p ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* p r ⟨ toℚᵘ (p * r) ≤⟨ toℚᵘ-mono-≤ pr≤qr ⟩ toℚᵘ (q * r) ≃⟨ toℚᵘ-homo-* q r ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r ∎)) where open ℚᵘ.≤-Reasoning *-cancelˡ-≤-neg : ∀ r .{{_ : Negative r}} → r * p ≤ r * q → p ≥ q *-cancelˡ-≤-neg {p} {q} r rewrite *-comm r p | *-comm r q = *-cancelʳ-≤-neg r nonNeg*nonNeg⇒nonNeg : ∀ p .{{_ : NonNegative p}} q .{{_ : NonNegative q}} → NonNegative (p * q) nonNeg*nonNeg⇒nonNeg p q = nonNegative $ begin 0ℚ ≡⟨ *-zeroʳ p ⟨ p * 0ℚ ≤⟨ *-monoˡ-≤-nonNeg p (nonNegative⁻¹ q) ⟩ p * q ∎ where open ≤-Reasoning nonPos*nonNeg⇒nonPos : ∀ p .{{_ : NonPositive p}} q .{{_ : NonNegative q}} → NonPositive (p * q) nonPos*nonNeg⇒nonPos p q = nonPositive $ begin p * q ≤⟨ *-monoˡ-≤-nonPos p (nonNegative⁻¹ q) ⟩ p * 0ℚ ≡⟨ *-zeroʳ p ⟩ 0ℚ ∎ where open ≤-Reasoning nonNeg*nonPos⇒nonPos : ∀ p .{{_ : NonNegative p}} q .{{_ : NonPositive q}} → NonPositive (p * q) nonNeg*nonPos⇒nonPos p q = nonPositive $ begin p * q ≤⟨ *-monoˡ-≤-nonNeg p (nonPositive⁻¹ q) ⟩ p * 0ℚ ≡⟨ *-zeroʳ p ⟩ 0ℚ ∎ where open ≤-Reasoning nonPos*nonPos⇒nonPos : ∀ p .{{_ : NonPositive p}} q .{{_ : NonPositive q}} → NonNegative (p * q) nonPos*nonPos⇒nonPos p q = nonNegative $ begin 0ℚ ≡⟨ *-zeroʳ p ⟨ p * 0ℚ ≤⟨ *-monoˡ-≤-nonPos p (nonPositive⁻¹ q) ⟩ p * q ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of _*_ and _<_ *-monoˡ-<-pos : ∀ r .{{_ : Positive r}} → Monotonic₁ _<_ _<_ (_* r) *-monoˡ-<-pos r {p} {q} p<q = toℚᵘ-cancel-< (begin-strict toℚᵘ (p * r) ≃⟨ toℚᵘ-homo-* p r ⟩ toℚᵘ p ℚᵘ.* toℚᵘ r <⟨ ℚᵘ.*-monoˡ-<-pos (toℚᵘ r) (toℚᵘ-mono-< p<q) ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* q r ⟨ toℚᵘ (q * r) ∎) where open ℚᵘ.≤-Reasoning *-monoʳ-<-pos : ∀ r .{{_ : Positive r}} → Monotonic₁ _<_ _<_ (r *_) *-monoʳ-<-pos r {p} {q} rewrite *-comm r p | *-comm r q = *-monoˡ-<-pos r *-cancelˡ-<-nonNeg : ∀ r .{{_ : NonNegative r}} → ∀ {p q} → r * p < r * q → p < q *-cancelˡ-<-nonNeg r {p} {q} rp<rq = toℚᵘ-cancel-< (ℚᵘ.*-cancelˡ-<-nonNeg (toℚᵘ r) (begin-strict toℚᵘ r ℚᵘ.* toℚᵘ p ≃⟨ toℚᵘ-homo-* r p ⟨ toℚᵘ (r * p) <⟨ toℚᵘ-mono-< rp<rq ⟩ toℚᵘ (r * q) ≃⟨ toℚᵘ-homo-* r q ⟩ toℚᵘ r ℚᵘ.* toℚᵘ q ∎)) where open ℚᵘ.≤-Reasoning *-cancelʳ-<-nonNeg : ∀ r .{{_ : NonNegative r}} → ∀ {p q} → p * r < q * r → p < q *-cancelʳ-<-nonNeg r {p} {q} rewrite *-comm p r | *-comm q r = *-cancelˡ-<-nonNeg r *-monoˡ-<-neg : ∀ r .{{_ : Negative r}} → Monotonic₁ _<_ _>_ (_* r) *-monoˡ-<-neg r {p} {q} p<q = toℚᵘ-cancel-< (begin-strict toℚᵘ (q * r) ≃⟨ toℚᵘ-homo-* q r ⟩ toℚᵘ q ℚᵘ.* toℚᵘ r <⟨ ℚᵘ.*-monoˡ-<-neg (toℚᵘ r) (toℚᵘ-mono-< p<q) ⟩ toℚᵘ p ℚᵘ.* toℚᵘ r ≃⟨ toℚᵘ-homo-* p r ⟨ toℚᵘ (p * r) ∎) where open ℚᵘ.≤-Reasoning *-monoʳ-<-neg : ∀ r .{{_ : Negative r}} → Monotonic₁ _<_ _>_ (r *_) *-monoʳ-<-neg r {p} {q} rewrite *-comm r p | *-comm r q = *-monoˡ-<-neg r *-cancelˡ-<-nonPos : ∀ r .{{_ : NonPositive r}} → r * p < r * q → p > q *-cancelˡ-<-nonPos {p} {q} r rp<rq = toℚᵘ-cancel-< (ℚᵘ.*-cancelˡ-<-nonPos (toℚᵘ r) (begin-strict toℚᵘ r ℚᵘ.* toℚᵘ p ≃⟨ toℚᵘ-homo-* r p ⟨ toℚᵘ (r * p) <⟨ toℚᵘ-mono-< rp<rq ⟩ toℚᵘ (r * q) ≃⟨ toℚᵘ-homo-* r q ⟩ toℚᵘ r ℚᵘ.* toℚᵘ q ∎)) where open ℚᵘ.≤-Reasoning *-cancelʳ-<-nonPos : ∀ r .{{_ : NonPositive r}} → p * r < q * r → p > q *-cancelʳ-<-nonPos {p} {q} r rewrite *-comm p r | *-comm q r = *-cancelˡ-<-nonPos r pos*pos⇒pos : ∀ p .{{_ : Positive p}} q .{{_ : Positive q}} → Positive (p * q) pos*pos⇒pos p q = positive $ begin-strict 0ℚ ≡⟨ *-zeroʳ p ⟨ p * 0ℚ <⟨ *-monoʳ-<-pos p (positive⁻¹ q) ⟩ p * q ∎ where open ≤-Reasoning neg*pos⇒neg : ∀ p .{{_ : Negative p}} q .{{_ : Positive q}} → Negative (p * q) neg*pos⇒neg p q = negative $ begin-strict p * q <⟨ *-monoʳ-<-neg p (positive⁻¹ q) ⟩ p * 0ℚ ≡⟨ *-zeroʳ p ⟩ 0ℚ ∎ where open ≤-Reasoning pos*neg⇒neg : ∀ p .{{_ : Positive p}} q .{{_ : Negative q}} → Negative (p * q) pos*neg⇒neg p q = negative $ begin-strict p * q <⟨ *-monoʳ-<-pos p (negative⁻¹ q) ⟩ p * 0ℚ ≡⟨ *-zeroʳ p ⟩ 0ℚ ∎ where open ≤-Reasoning neg*neg⇒pos : ∀ p .{{_ : Negative p}} q .{{_ : Negative q}} → Positive (p * q) neg*neg⇒pos p q = positive $ begin-strict 0ℚ ≡⟨ *-zeroʳ p ⟨ p * 0ℚ <⟨ *-monoʳ-<-neg p (negative⁻¹ q) ⟩ p * q ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of _⊓_ ------------------------------------------------------------------------ p≤q⇒p⊔q≡q : p ≤ q → p ⊔ q ≡ q p≤q⇒p⊔q≡q {p@record{}} {q@record{}} p≤q with p ≤ᵇ q in p≰q ... | true = refl ... | false = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym p≰q) λ()) p≥q⇒p⊔q≡p : p ≥ q → p ⊔ q ≡ p p≥q⇒p⊔q≡p {p@record{}} {q@record{}} p≥q with p ≤ᵇ q in p≤q ... | true = ≤-antisym p≥q (≤ᵇ⇒≤ (subst T (sym p≤q) _)) ... | false = refl p≤q⇒p⊓q≡p : p ≤ q → p ⊓ q ≡ p p≤q⇒p⊓q≡p {p@record{}} {q@record{}} p≤q with p ≤ᵇ q in p≰q ... | true = refl ... | false = contradiction (≤⇒≤ᵇ p≤q) (subst (¬_ ∘ T) (sym p≰q) λ()) p≥q⇒p⊓q≡q : p ≥ q → p ⊓ q ≡ q p≥q⇒p⊓q≡q {p@record{}} {q@record{}} p≥q with p ≤ᵇ q in p≤q ... | true = ≤-antisym (≤ᵇ⇒≤ (subst T (sym p≤q) _)) p≥q ... | false = refl ⊓-operator : MinOperator ≤-totalPreorder ⊓-operator = record { x≤y⇒x⊓y≈x = p≤q⇒p⊓q≡p ; x≥y⇒x⊓y≈y = p≥q⇒p⊓q≡q } ⊔-operator : MaxOperator ≤-totalPreorder ⊔-operator = record { x≤y⇒x⊔y≈y = p≤q⇒p⊔q≡q ; x≥y⇒x⊔y≈x = p≥q⇒p⊔q≡p } ------------------------------------------------------------------------ -- Automatically derived properties of _⊓_ and _⊔_ private module ⊓-⊔-properties = MinMaxOp ⊓-operator ⊔-operator module ⊓-⊔-latticeProperties = LatticeMinMaxOp ⊓-operator ⊔-operator open ⊓-⊔-properties public using ( ⊓-idem -- : Idempotent _⊓_ ; ⊓-sel -- : Selective _⊓_ ; ⊓-assoc -- : Associative _⊓_ ; ⊓-comm -- : Commutative _⊓_ ; ⊔-idem -- : Idempotent _⊔_ ; ⊔-sel -- : Selective _⊔_ ; ⊔-assoc -- : Associative _⊔_ ; ⊔-comm -- : Commutative _⊔_ ; ⊓-distribˡ-⊔ -- : _⊓_ DistributesOverˡ _⊔_ ; ⊓-distribʳ-⊔ -- : _⊓_ DistributesOverʳ _⊔_ ; ⊓-distrib-⊔ -- : _⊓_ DistributesOver _⊔_ ; ⊔-distribˡ-⊓ -- : _⊔_ DistributesOverˡ _⊓_ ; ⊔-distribʳ-⊓ -- : _⊔_ DistributesOverʳ _⊓_ ; ⊔-distrib-⊓ -- : _⊔_ DistributesOver _⊓_ ; ⊓-absorbs-⊔ -- : _⊓_ Absorbs _⊔_ ; ⊔-absorbs-⊓ -- : _⊔_ Absorbs _⊓_ ; ⊔-⊓-absorptive -- : Absorptive _⊔_ _⊓_ ; ⊓-⊔-absorptive -- : Absorptive _⊓_ _⊔_ ; ⊓-isMagma -- : IsMagma _⊓_ ; ⊓-isSemigroup -- : IsSemigroup _⊓_ ; ⊓-isCommutativeSemigroup -- : IsCommutativeSemigroup _⊓_ ; ⊓-isBand -- : IsBand _⊓_ ; ⊓-isSelectiveMagma -- : IsSelectiveMagma _⊓_ ; ⊔-isMagma -- : IsMagma _⊔_ ; ⊔-isSemigroup -- : IsSemigroup _⊔_ ; ⊔-isCommutativeSemigroup -- : IsCommutativeSemigroup _⊔_ ; ⊔-isBand -- : IsBand _⊔_ ; ⊔-isSelectiveMagma -- : IsSelectiveMagma _⊔_ ; ⊓-magma -- : Magma _ _ ; ⊓-semigroup -- : Semigroup _ _ ; ⊓-band -- : Band _ _ ; ⊓-commutativeSemigroup -- : CommutativeSemigroup _ _ ; ⊓-selectiveMagma -- : SelectiveMagma _ _ ; ⊔-magma -- : Magma _ _ ; ⊔-semigroup -- : Semigroup _ _ ; ⊔-band -- : Band _ _ ; ⊔-commutativeSemigroup -- : CommutativeSemigroup _ _ ; ⊔-selectiveMagma -- : SelectiveMagma _ _ ; ⊓-glb -- : ∀ {p q r} → p ≥ r → q ≥ r → p ⊓ q ≥ r ; ⊓-triangulate -- : ∀ p q r → p ⊓ q ⊓ r ≡ (p ⊓ q) ⊓ (q ⊓ r) ; ⊓-mono-≤ -- : _⊓_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ ; ⊓-monoˡ-≤ -- : ∀ p → (_⊓ p) Preserves _≤_ ⟶ _≤_ ; ⊓-monoʳ-≤ -- : ∀ p → (p ⊓_) Preserves _≤_ ⟶ _≤_ ; ⊔-lub -- : ∀ {p q r} → p ≤ r → q ≤ r → p ⊔ q ≤ r ; ⊔-triangulate -- : ∀ p q r → p ⊔ q ⊔ r ≡ (p ⊔ q) ⊔ (q ⊔ r) ; ⊔-mono-≤ -- : _⊔_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ ; ⊔-monoˡ-≤ -- : ∀ p → (_⊔ p) Preserves _≤_ ⟶ _≤_ ; ⊔-monoʳ-≤ -- : ∀ p → (p ⊔_) Preserves _≤_ ⟶ _≤_ ) renaming ( x⊓y≈y⇒y≤x to p⊓q≡q⇒q≤p -- : ∀ {p q} → p ⊓ q ≡ q → q ≤ p ; x⊓y≈x⇒x≤y to p⊓q≡p⇒p≤q -- : ∀ {p q} → p ⊓ q ≡ p → p ≤ q ; x⊓y≤x to p⊓q≤p -- : ∀ p q → p ⊓ q ≤ p ; x⊓y≤y to p⊓q≤q -- : ∀ p q → p ⊓ q ≤ q ; x≤y⇒x⊓z≤y to p≤q⇒p⊓r≤q -- : ∀ {p q} r → p ≤ q → p ⊓ r ≤ q ; x≤y⇒z⊓x≤y to p≤q⇒r⊓p≤q -- : ∀ {p q} r → p ≤ q → r ⊓ p ≤ q ; x≤y⊓z⇒x≤y to p≤q⊓r⇒p≤q -- : ∀ {p} q r → p ≤ q ⊓ r → p ≤ q ; x≤y⊓z⇒x≤z to p≤q⊓r⇒p≤r -- : ∀ {p} q r → p ≤ q ⊓ r → p ≤ r ; x⊔y≈y⇒x≤y to p⊔q≡q⇒p≤q -- : ∀ {p q} → p ⊔ q ≡ q → p ≤ q ; x⊔y≈x⇒y≤x to p⊔q≡p⇒q≤p -- : ∀ {p q} → p ⊔ q ≡ p → q ≤ p ; x≤x⊔y to p≤p⊔q -- : ∀ p q → p ≤ p ⊔ q ; x≤y⊔x to p≤q⊔p -- : ∀ p q → p ≤ q ⊔ p ; x≤y⇒x≤y⊔z to p≤q⇒p≤q⊔r -- : ∀ {p q} r → p ≤ q → p ≤ q ⊔ r ; x≤y⇒x≤z⊔y to p≤q⇒p≤r⊔q -- : ∀ {p q} r → p ≤ q → p ≤ r ⊔ q ; x⊔y≤z⇒x≤z to p⊔q≤r⇒p≤r -- : ∀ p q {r} → p ⊔ q ≤ r → p ≤ r ; x⊔y≤z⇒y≤z to p⊔q≤r⇒q≤r -- : ∀ p q {r} → p ⊔ q ≤ r → q ≤ r ; x⊓y≤x⊔y to p⊓q≤p⊔q -- : ∀ p q → p ⊓ q ≤ p ⊔ q ) open ⊓-⊔-latticeProperties public using ( ⊓-isSemilattice -- : IsSemilattice _⊓_ ; ⊔-isSemilattice -- : IsSemilattice _⊔_ ; ⊔-⊓-isLattice -- : IsLattice _⊔_ _⊓_ ; ⊓-⊔-isLattice -- : IsLattice _⊓_ _⊔_ ; ⊔-⊓-isDistributiveLattice -- : IsDistributiveLattice _⊔_ _⊓_ ; ⊓-⊔-isDistributiveLattice -- : IsDistributiveLattice _⊓_ _⊔_ ; ⊓-semilattice -- : Semilattice _ _ ; ⊔-semilattice -- : Semilattice _ _ ; ⊔-⊓-lattice -- : Lattice _ _ ; ⊓-⊔-lattice -- : Lattice _ _ ; ⊔-⊓-distributiveLattice -- : DistributiveLattice _ _ ; ⊓-⊔-distributiveLattice -- : DistributiveLattice _ _ ) ------------------------------------------------------------------------ -- Other properties of _⊓_ and _⊔_ mono-≤-distrib-⊔ : ∀ {f} → Monotonic₁ _≤_ _≤_ f → ∀ p q → f (p ⊔ q) ≡ f p ⊔ f q mono-≤-distrib-⊔ {f} = ⊓-⊔-properties.mono-≤-distrib-⊔ (cong f) mono-≤-distrib-⊓ : ∀ {f} → Monotonic₁ _≤_ _≤_ f → ∀ p q → f (p ⊓ q) ≡ f p ⊓ f q mono-≤-distrib-⊓ {f} = ⊓-⊔-properties.mono-≤-distrib-⊓ (cong f) mono-<-distrib-⊓ : ∀ {f} → Monotonic₁ _<_ _<_ f → ∀ p q → f (p ⊓ q) ≡ f p ⊓ f q mono-<-distrib-⊓ {f} f-mono-< p q with <-cmp p q ... | tri< p<q p≢r p≯q = begin f (p ⊓ q) ≡⟨ cong f (p≤q⇒p⊓q≡p (<⇒≤ p<q)) ⟩ f p ≡⟨ p≤q⇒p⊓q≡p (<⇒≤ (f-mono-< p<q)) ⟨ f p ⊓ f q ∎ where open ≡-Reasoning ... | tri≈ p≮q refl p≯q = begin f (p ⊓ q) ≡⟨ cong f (⊓-idem p) ⟩ f p ≡⟨ ⊓-idem (f p) ⟨ f p ⊓ f q ∎ where open ≡-Reasoning ... | tri> p≮q p≡r p>q = begin f (p ⊓ q) ≡⟨ cong f (p≥q⇒p⊓q≡q (<⇒≤ p>q)) ⟩ f q ≡⟨ p≥q⇒p⊓q≡q (<⇒≤ (f-mono-< p>q)) ⟨ f p ⊓ f q ∎ where open ≡-Reasoning mono-<-distrib-⊔ : ∀ {f} → Monotonic₁ _<_ _<_ f → ∀ p q → f (p ⊔ q) ≡ f p ⊔ f q mono-<-distrib-⊔ {f} f-mono-< p q with <-cmp p q ... | tri< p<q p≢r p≯q = begin f (p ⊔ q) ≡⟨ cong f (p≤q⇒p⊔q≡q (<⇒≤ p<q)) ⟩ f q ≡⟨ p≤q⇒p⊔q≡q (<⇒≤ (f-mono-< p<q)) ⟨ f p ⊔ f q ∎ where open ≡-Reasoning ... | tri≈ p≮q refl p≯q = begin f (p ⊔ q) ≡⟨ cong f (⊔-idem p) ⟩ f q ≡⟨ ⊔-idem (f p) ⟨ f p ⊔ f q ∎ where open ≡-Reasoning ... | tri> p≮q p≡r p>q = begin f (p ⊔ q) ≡⟨ cong f (p≥q⇒p⊔q≡p (<⇒≤ p>q)) ⟩ f p ≡⟨ p≥q⇒p⊔q≡p (<⇒≤ (f-mono-< p>q)) ⟨ f p ⊔ f q ∎ where open ≡-Reasoning antimono-≤-distrib-⊓ : ∀ {f} → Monotonic₁ _≤_ _≥_ f → ∀ p q → f (p ⊓ q) ≡ f p ⊔ f q antimono-≤-distrib-⊓ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊓ (cong f) antimono-≤-distrib-⊔ : ∀ {f} → Monotonic₁ _≤_ _≥_ f → ∀ p q → f (p ⊔ q) ≡ f p ⊓ f q antimono-≤-distrib-⊔ {f} = ⊓-⊔-properties.antimono-≤-distrib-⊔ (cong f) ------------------------------------------------------------------------ -- Properties of _⊓_ and _*_ *-distribˡ-⊓-nonNeg : ∀ p .{{_ : NonNegative p}} → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊓ (p * r) *-distribˡ-⊓-nonNeg p = mono-≤-distrib-⊓ (*-monoˡ-≤-nonNeg p) *-distribʳ-⊓-nonNeg : ∀ p .{{_ : NonNegative p}} → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊓ (r * p) *-distribʳ-⊓-nonNeg p = mono-≤-distrib-⊓ (*-monoʳ-≤-nonNeg p) *-distribˡ-⊔-nonNeg : ∀ p .{{_ : NonNegative p}} → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊔ (p * r) *-distribˡ-⊔-nonNeg p = mono-≤-distrib-⊔ (*-monoˡ-≤-nonNeg p) *-distribʳ-⊔-nonNeg : ∀ p .{{_ : NonNegative p}} → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊔ (r * p) *-distribʳ-⊔-nonNeg p = mono-≤-distrib-⊔ (*-monoʳ-≤-nonNeg p) ------------------------------------------------------------------------ -- Properties of _⊓_, _⊔_ and _*_ *-distribˡ-⊔-nonPos : ∀ p .{{_ : NonPositive p}} → ∀ q r → p * (q ⊔ r) ≡ (p * q) ⊓ (p * r) *-distribˡ-⊔-nonPos p = antimono-≤-distrib-⊔ (*-monoˡ-≤-nonPos p) *-distribʳ-⊔-nonPos : ∀ p .{{_ : NonPositive p}} → ∀ q r → (q ⊔ r) * p ≡ (q * p) ⊓ (r * p) *-distribʳ-⊔-nonPos p = antimono-≤-distrib-⊔ (*-monoʳ-≤-nonPos p) *-distribˡ-⊓-nonPos : ∀ p .{{_ : NonPositive p}} → ∀ q r → p * (q ⊓ r) ≡ (p * q) ⊔ (p * r) *-distribˡ-⊓-nonPos p = antimono-≤-distrib-⊓ (*-monoˡ-≤-nonPos p) *-distribʳ-⊓-nonPos : ∀ p .{{_ : NonPositive p}} → ∀ q r → (q ⊓ r) * p ≡ (q * p) ⊔ (r * p) *-distribʳ-⊓-nonPos p = antimono-≤-distrib-⊓ (*-monoʳ-≤-nonPos p) ------------------------------------------------------------------------ -- Properties of 1/_ ------------------------------------------------------------------------ nonZero⇒1/nonZero : ∀ p .{{_ : NonZero p}} → NonZero (1/ p) nonZero⇒1/nonZero (mkℚ +[1+ _ ] _ _) = _ nonZero⇒1/nonZero (mkℚ -[1+ _ ] _ _) = _ 1/-involutive : ∀ p .{{_ : NonZero p}} → (1/ (1/ p)) {{nonZero⇒1/nonZero p}} ≡ p 1/-involutive (mkℚ +[1+ n ] d-1 _) = refl 1/-involutive (mkℚ -[1+ n ] d-1 _) = refl 1/pos⇒pos : ∀ p .{{_ : Positive p}} → Positive ((1/ p) {{pos⇒nonZero p}}) 1/pos⇒pos (mkℚ +[1+ _ ] _ _) = _ 1/neg⇒neg : ∀ p .{{_ : Negative p}} → Negative ((1/ p) {{neg⇒nonZero p}}) 1/neg⇒neg (mkℚ -[1+ _ ] _ _) = _ pos⇒1/pos : ∀ p .{{_ : NonZero p}} .{{_ : Positive (1/ p)}} → Positive p pos⇒1/pos p = subst Positive (1/-involutive p) (1/pos⇒pos (1/ p)) neg⇒1/neg : ∀ p .{{_ : NonZero p}} .{{_ : Negative (1/ p)}} → Negative p neg⇒1/neg p = subst Negative (1/-involutive p) (1/neg⇒neg (1/ p)) ------------------------------------------------------------------------ -- Properties of ∣_∣ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Monomorphic to unnormalised -_ toℚᵘ-homo-∣-∣ : Homomorphic₁ toℚᵘ ∣_∣ ℚᵘ.∣_∣ toℚᵘ-homo-∣-∣ (mkℚ +[1+ _ ] _ _) = *≡* refl toℚᵘ-homo-∣-∣ (mkℚ +0 _ _) = *≡* refl toℚᵘ-homo-∣-∣ (mkℚ -[1+ _ ] _ _) = *≡* refl ------------------------------------------------------------------------ -- Properties ∣p∣≡0⇒p≡0 : ∀ p → ∣ p ∣ ≡ 0ℚ → p ≡ 0ℚ ∣p∣≡0⇒p≡0 (mkℚ +0 zero _) ∣p∣≡0 = refl 0≤∣p∣ : ∀ p → 0ℚ ≤ ∣ p ∣ 0≤∣p∣ p@record{} = *≤* (begin (↥ 0ℚ) ℤ.* (↧ ∣ p ∣) ≡⟨ ℤ.*-zeroˡ (↧ ∣ p ∣) ⟩ 0ℤ ≤⟨ ℤ.+≤+ ℕ.z≤n ⟩ ↥ ∣ p ∣ ≡⟨ ℤ.*-identityʳ (↥ ∣ p ∣) ⟨ ↥ ∣ p ∣ ℤ.* 1ℤ ∎) where open ℤ.≤-Reasoning 0≤p⇒∣p∣≡p : 0ℚ ≤ p → ∣ p ∣ ≡ p 0≤p⇒∣p∣≡p {p@record{}} 0≤p = toℚᵘ-injective (ℚᵘ.0≤p⇒∣p∣≃p (toℚᵘ-mono-≤ 0≤p)) ∣-p∣≡∣p∣ : ∀ p → ∣ - p ∣ ≡ ∣ p ∣ ∣-p∣≡∣p∣ (mkℚ +[1+ n ] d-1 _) = refl ∣-p∣≡∣p∣ (mkℚ +0 d-1 _) = refl ∣-p∣≡∣p∣ (mkℚ -[1+ n ] d-1 _) = refl ∣p∣≡p⇒0≤p : ∀ {p} → ∣ p ∣ ≡ p → 0ℚ ≤ p ∣p∣≡p⇒0≤p {p} ∣p∣≡p = toℚᵘ-cancel-≤ (ℚᵘ.∣p∣≃p⇒0≤p (begin-equality ℚᵘ.∣ toℚᵘ p ∣ ≃⟨ ℚᵘ.≃-sym (toℚᵘ-homo-∣-∣ p) ⟩ toℚᵘ ∣ p ∣ ≡⟨ cong toℚᵘ ∣p∣≡p ⟩ toℚᵘ p ∎)) where open ℚᵘ.≤-Reasoning ∣p∣≡p∨∣p∣≡-p : ∀ p → ∣ p ∣ ≡ p ⊎ ∣ p ∣ ≡ - p ∣p∣≡p∨∣p∣≡-p (mkℚ (+ n) d-1 _) = inj₁ refl ∣p∣≡p∨∣p∣≡-p (mkℚ (-[1+ n ]) d-1 _) = inj₂ refl ∣p+q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p + q ∣ ≤ ∣ p ∣ + ∣ q ∣ ∣p+q∣≤∣p∣+∣q∣ p q = toℚᵘ-cancel-≤ (begin toℚᵘ ∣ p + q ∣ ≃⟨ toℚᵘ-homo-∣-∣ (p + q) ⟩ ℚᵘ.∣ toℚᵘ (p + q) ∣ ≃⟨ ℚᵘ.∣-∣-cong (toℚᵘ-homo-+ p q) ⟩ ℚᵘ.∣ toℚᵘ p ℚᵘ.+ toℚᵘ q ∣ ≤⟨ ℚᵘ.∣p+q∣≤∣p∣+∣q∣ (toℚᵘ p) (toℚᵘ q) ⟩ ℚᵘ.∣ toℚᵘ p ∣ ℚᵘ.+ ℚᵘ.∣ toℚᵘ q ∣ ≃⟨ ℚᵘ.+-cong (toℚᵘ-homo-∣-∣ p) (toℚᵘ-homo-∣-∣ q) ⟨ toℚᵘ ∣ p ∣ ℚᵘ.+ toℚᵘ ∣ q ∣ ≃⟨ toℚᵘ-homo-+ ∣ p ∣ ∣ q ∣ ⟨ toℚᵘ (∣ p ∣ + ∣ q ∣) ∎) where open ℚᵘ.≤-Reasoning ∣p-q∣≤∣p∣+∣q∣ : ∀ p q → ∣ p - q ∣ ≤ ∣ p ∣ + ∣ q ∣ ∣p-q∣≤∣p∣+∣q∣ p@record{} q@record{} = begin ∣ p - q ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ p (- q) ⟩ ∣ p ∣ + ∣ - q ∣ ≡⟨ cong (λ h → ∣ p ∣ + h) (∣-p∣≡∣p∣ q) ⟩ ∣ p ∣ + ∣ q ∣ ∎ where open ≤-Reasoning ∣p*q∣≡∣p∣*∣q∣ : ∀ p q → ∣ p * q ∣ ≡ ∣ p ∣ * ∣ q ∣ ∣p*q∣≡∣p∣*∣q∣ p q = toℚᵘ-injective (begin-equality toℚᵘ ∣ p * q ∣ ≃⟨ toℚᵘ-homo-∣-∣ (p * q) ⟩ ℚᵘ.∣ toℚᵘ (p * q) ∣ ≃⟨ ℚᵘ.∣-∣-cong (toℚᵘ-homo-* p q) ⟩ ℚᵘ.∣ toℚᵘ p ℚᵘ.* toℚᵘ q ∣ ≃⟨ ℚᵘ.∣p*q∣≃∣p∣*∣q∣ (toℚᵘ p) (toℚᵘ q) ⟩ ℚᵘ.∣ toℚᵘ p ∣ ℚᵘ.* ℚᵘ.∣ toℚᵘ q ∣ ≃⟨ ℚᵘ.*-cong (toℚᵘ-homo-∣-∣ p) (toℚᵘ-homo-∣-∣ q) ⟨ toℚᵘ ∣ p ∣ ℚᵘ.* toℚᵘ ∣ q ∣ ≃⟨ toℚᵘ-homo-* ∣ p ∣ ∣ q ∣ ⟨ toℚᵘ (∣ p ∣ * ∣ q ∣) ∎) where open ℚᵘ.≤-Reasoning ∣-∣-nonNeg : ∀ p → NonNegative ∣ p ∣ ∣-∣-nonNeg (mkℚ +[1+ _ ] _ _) = _ ∣-∣-nonNeg (mkℚ +0 _ _) = _ ∣-∣-nonNeg (mkℚ -[1+ _ ] _ _) = _ ∣∣p∣∣≡∣p∣ : ∀ p → ∣ ∣ p ∣ ∣ ≡ ∣ p ∣ ∣∣p∣∣≡∣p∣ p = 0≤p⇒∣p∣≡p (0≤∣p∣ p) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 2.0 *-monoʳ-≤-neg : ∀ r → Negative r → (_* r) Preserves _≤_ ⟶ _≥_ *-monoʳ-≤-neg r@(mkℚ -[1+ _ ] _ _) _ = *-monoʳ-≤-nonPos r {-# WARNING_ON_USAGE *-monoʳ-≤-neg "Warning: *-monoʳ-≤-neg was deprecated in v2.0. Please use *-monoʳ-≤-nonPos instead." #-} *-monoˡ-≤-neg : ∀ r → Negative r → (r *_) Preserves _≤_ ⟶ _≥_ *-monoˡ-≤-neg r@(mkℚ -[1+ _ ] _ _) _ = *-monoˡ-≤-nonPos r {-# WARNING_ON_USAGE *-monoˡ-≤-neg "Warning: *-monoˡ-≤-neg was deprecated in v2.0. Please use *-monoˡ-≤-nonPos instead." #-} *-monoʳ-≤-pos : ∀ r → Positive r → (_* r) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤-pos r@(mkℚ +[1+ _ ] _ _) _ = *-monoʳ-≤-nonNeg r {-# WARNING_ON_USAGE *-monoʳ-≤-pos "Warning: *-monoʳ-≤-pos was deprecated in v2.0. Please use *-monoʳ-≤-nonNeg instead." #-} *-monoˡ-≤-pos : ∀ r → Positive r → (r *_) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤-pos r@(mkℚ +[1+ _ ] _ _) _ = *-monoˡ-≤-nonNeg r {-# WARNING_ON_USAGE *-monoˡ-≤-pos "Warning: *-monoˡ-≤-pos was deprecated in v2.0. Please use *-monoˡ-≤-nonNeg instead." #-} *-cancelˡ-<-pos : ∀ r → Positive r → ∀ {p q} → r * p < r * q → p < q *-cancelˡ-<-pos r@(mkℚ +[1+ _ ] _ _) _ = *-cancelˡ-<-nonNeg r {-# WARNING_ON_USAGE *-cancelˡ-<-pos "Warning: *-cancelˡ-<-pos was deprecated in v2.0. Please use *-cancelˡ-<-nonNeg instead." #-} *-cancelʳ-<-pos : ∀ r → Positive r → ∀ {p q} → p * r < q * r → p < q *-cancelʳ-<-pos r@(mkℚ +[1+ _ ] _ _) _ = *-cancelʳ-<-nonNeg r {-# WARNING_ON_USAGE *-cancelʳ-<-pos "Warning: *-cancelʳ-<-pos was deprecated in v2.0. Please use *-cancelʳ-<-nonNeg instead." #-} *-cancelˡ-<-neg : ∀ r → Negative r → ∀ {p q} → r * p < r * q → p > q *-cancelˡ-<-neg r@(mkℚ -[1+ _ ] _ _) _ = *-cancelˡ-<-nonPos r {-# WARNING_ON_USAGE *-cancelˡ-<-neg "Warning: *-cancelˡ-<-neg was deprecated in v2.0. Please use *-cancelˡ-<-nonPos instead." #-} *-cancelʳ-<-neg : ∀ r → Negative r → ∀ {p q} → p * r < q * r → p > q *-cancelʳ-<-neg r@(mkℚ -[1+ _ ] _ _) _ = *-cancelʳ-<-nonPos r {-# WARNING_ON_USAGE *-cancelʳ-<-neg "Warning: *-cancelʳ-<-neg was deprecated in v2.0. Please use *-cancelʳ-<-nonPos instead." #-} negative<positive : Negative p → Positive q → p < q negative<positive {p} {q} p<0 q>0 = neg<pos p q {{p<0}} {{q>0}} {-# WARNING_ON_USAGE negative<positive "Warning: negative<positive was deprecated in v2.0. Please use neg<pos instead." #-} {- issue1865/issue1755: raw bundles have moved to `Data.X.Base` -} open Data.Rational.Base public using (+-rawMagma; +-0-rawGroup; *-rawMagma; +-*-rawNearSemiring; +-*-rawSemiring; +-*-rawRing) renaming (+-0-rawMonoid to +-rawMonoid; *-1-rawMonoid to *-rawMonoid)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4