------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where every consecutative pair of elements is related. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.List.Relation.Unary.Linked {a} {A : Set a} where open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.Product.Base as Prod using (_,_; _×_; uncurry; <_,_>) open import Data.Fin.Base using (zero; suc) open import Data.Maybe.Base using (just) open import Data.Maybe.Relation.Binary.Connected using (Connected; just; just-nothing) open import Function.Base using (id; _∘_) open import Level using (Level; _⊔_) open import Relation.Binary.Definitions as B open import Relation.Binary.Core using (Rel; _⇒_) open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_) open import Relation.Binary.PropositionalEquality.Core using (refl; cong₂) open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_) open import Relation.Nullary.Decidable using (yes; no; map′; _×-dec_) private variable p q r ℓ : Level R : Rel A ℓ ------------------------------------------------------------------------ -- Definition -- Linked R xs means that every consecutative pair of elements in xs is -- a member of relation R. infixr 5 _∷_ data Linked (R : Rel A ℓ) : List A → Set (a ⊔ ℓ) where [] : Linked R [] [-] : ∀ {x} → Linked R (x ∷ []) _∷_ : ∀ {x y xs} → R x y → Linked R (y ∷ xs) → Linked R (x ∷ y ∷ xs) ------------------------------------------------------------------------ -- Operations module _ {R : Rel A p} where head : ∀ {x y xs} → Linked R (x ∷ y ∷ xs) → R x y head (Rxy ∷ Rxs) = Rxy tail : ∀ {x xs} → Linked R (x ∷ xs) → Linked R xs tail [-] = [] tail (_ ∷ Rxs) = Rxs head′ : ∀ {x xs} → Linked R (x ∷ xs) → Connected R (just x) (List.head xs) head′ [-] = just-nothing head′ (Rxy ∷ _) = just Rxy infixr 5 _∷′_ _∷′_ : ∀ {x xs} → Connected R (just x) (List.head xs) → Linked R xs → Linked R (x ∷ xs) _∷′_ {xs = []} _ _ = [-] _∷′_ {xs = y ∷ xs} (just Rxy) Ryxs = Rxy ∷ Ryxs module _ {R : Rel A p} {S : Rel A q} where map : R ⇒ S → Linked R ⊆ Linked S map R⇒S [] = [] map R⇒S [-] = [-] map R⇒S (x~xs ∷ pxs) = R⇒S x~xs ∷ map R⇒S pxs module _ {P : Rel A p} {Q : Rel A q} {R : Rel A r} where zipWith : P ∩ᵇ Q ⇒ R → Linked P ∩ᵘ Linked Q ⊆ Linked R zipWith f ([] , []) = [] zipWith f ([-] , [-]) = [-] zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : R ⇒ P ∩ᵇ Q → Linked R ⊆ Linked P ∩ᵘ Linked Q unzipWith f [] = [] , [] unzipWith f [-] = [-] , [-] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs) module _ {P : Rel A p} {Q : Rel A q} where zip : Linked P ∩ᵘ Linked Q ⊆ Linked (P ∩ᵇ Q) zip = zipWith id unzip : Linked (P ∩ᵇ Q) ⊆ Linked P ∩ᵘ Linked Q unzip = unzipWith id lookup : ∀ {x xs} → Transitive R → Linked R xs → Connected R (just x) (List.head xs) → ∀ i → R x (List.lookup xs i) lookup trans [-] (just Rvx) zero = Rvx lookup trans (x ∷ xs↗) (just Rvx) zero = Rvx lookup trans (x ∷ xs↗) (just Rvx) (suc i) = lookup trans xs↗ (just (trans Rvx x)) i ------------------------------------------------------------------------ -- Properties of predicates preserved by Linked module _ {R : Rel A ℓ} where linked? : B.Decidable R → U.Decidable (Linked R) linked? R? [] = yes [] linked? R? (x ∷ []) = yes [-] linked? R? (x ∷ y ∷ xs) = map′ (uncurry _∷_) < head , tail > (R? x y ×-dec linked? R? (y ∷ xs)) irrelevant : B.Irrelevant R → U.Irrelevant (Linked R) irrelevant irr [] [] = refl irrelevant irr [-] [-] = refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : U.Satisfiable (Linked R) satisfiable = [] , []
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4