------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation with respect to a -- setoid which is decidable. This is a generalisation of what is -- commonly known as Order Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (DecSetoid; DecPoset) open import Relation.Binary.Structures using (IsDecPartialOrder) open import Relation.Binary.Definitions using (Decidable) module Data.List.Relation.Binary.Sublist.DecSetoid {c ℓ} (S : DecSetoid c ℓ) where import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEquality import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties as HeterogeneousProperties open import Level using (_⊔_) open DecSetoid S open DecSetoidEquality S infix 4 _⊆?_ ------------------------------------------------------------------------ -- Re-export core definitions open SetoidSublist setoid public ------------------------------------------------------------------------ -- Additional relational properties _⊆?_ : Decidable _⊆_ _⊆?_ = HeterogeneousProperties.sublist? _≟_ ⊆-isDecPartialOrder : IsDecPartialOrder _≋_ _⊆_ ⊆-isDecPartialOrder = record { isPartialOrder = ⊆-isPartialOrder ; _≟_ = _≋?_ ; _≤?_ = _⊆?_ } ⊆-decPoset : DecPoset c (c ⊔ ℓ) (c ⊔ ℓ) ⊆-decPoset = record { isDecPartialOrder = ⊆-isDecPartialOrder }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4