------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation for types which have -- a decidable equality. This is commonly known as Order Preserving -- Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Definitions using (DecidableEquality) module Data.List.Relation.Binary.Sublist.DecPropositional {a} {A : Set a} (_≟_ : DecidableEquality A) where open import Data.List.Relation.Binary.Equality.DecPropositional _≟_ using (_≡?_) import Data.List.Relation.Binary.Sublist.DecSetoid as DecSetoidSublist import Data.List.Relation.Binary.Sublist.Propositional as PropositionalSublist open import Relation.Binary.Bundles using (DecPoset) open import Relation.Binary.Structures using (IsDecPartialOrder) open import Relation.Binary.PropositionalEquality.Core using (_≡_) open import Relation.Binary.PropositionalEquality.Properties using (decSetoid) ------------------------------------------------------------------------ -- Re-export core definitions and operations open PropositionalSublist {A = A} public open DecSetoidSublist (decSetoid _≟_) using (_⊆?_) public ------------------------------------------------------------------------ -- Additional relational properties ⊆-isDecPartialOrder : IsDecPartialOrder _≡_ _⊆_ ⊆-isDecPartialOrder = record { isPartialOrder = ⊆-isPartialOrder ; _≟_ = _≡?_ ; _≤?_ = _⊆?_ } ⊆-decPoset : DecPoset a a a ⊆-decPoset = record { isDecPartialOrder = ⊆-isDecPartialOrder }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4