------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable pointwise equality over lists using propositional equality ------------------------------------------------------------------------ -- Note think carefully about using this module as pointwise -- propositional equality can usually be replaced with propositional -- equality. {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Definitions using (DecidableEquality) module Data.List.Relation.Binary.Equality.DecPropositional {a} {A : Set a} (_≟_ : DecidableEquality A) where open import Data.List.Base using (List) open import Data.List.Properties using (≡-dec) import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq open import Relation.Binary.PropositionalEquality.Properties using (decSetoid) ------------------------------------------------------------------------ -- Publically re-export everything from decSetoid and propositional -- equality open PropositionalEq public open DecSetoidEq (decSetoid _≟_) public using (_≋?_; ≋-isDecEquivalence; ≋-decSetoid) ------------------------------------------------------------------------ -- Additional proofs infix 4 _≡?_ _≡?_ : DecidableEquality (List A) _≡?_ = ≡-dec _≟_
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4