----------------------------------------------------------------------- -- The Agda standard library -- -- Properties related to setoid list membership ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.List.Membership.Setoid.Properties where open import Algebra using (Op₂; Selective) open import Data.Bool.Base using (true; false) open import Data.Fin.Base using (Fin; zero; suc) open import Data.Fin.Properties using (suc-injective) open import Data.List.Base hiding (find) import Data.List.Membership.Setoid as Membership import Data.List.Relation.Binary.Equality.Setoid as Equality open import Data.List.Relation.Unary.All as All using (All) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Relation.Unary.All.Properties.Core as All import Data.List.Relation.Unary.Any.Properties as Any import Data.List.Relation.Unary.Unique.Setoid as Unique open import Data.Nat.Base using (suc; z<s; _<_) open import Data.Product.Base as Product using (∃; _×_; _,_ ; ∃₂; ∃-syntax) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]′) open import Function.Base using (_$_; flip; _∘_; _∘′_; id) open import Function.Bundles using (_↔_; mk↔; _⇔_; mk⇔) open import Level using (Level) open import Relation.Binary.Core using (Rel; _Preserves₂_⟶_⟶_; _Preserves_⟶_) open import Relation.Binary.Definitions as Binary hiding (Decidable) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_) open import Relation.Nullary.Decidable using (does; _because_; yes; no) open import Relation.Nullary.Negation.Core using (¬_; contradiction) open import Relation.Nullary.Reflects using (invert) open import Relation.Unary as Unary using (Decidable; Pred) open Setoid using (Carrier) private variable c c₁ c₂ c₃ p ℓ ℓ₁ ℓ₂ ℓ₃ : Level ------------------------------------------------------------------------ -- Basics module _ (S : Setoid c ℓ) where open Membership S ∉[] : ∀ {x} → x ∉ [] ∉[] () ------------------------------------------------------------------------ -- Equality properties module _ (S : Setoid c ℓ) where open Setoid S open Equality S open Membership S -- _∈_ respects the underlying equality ∈-resp-≈ : ∀ {xs} → (_∈ xs) Respects _≈_ ∈-resp-≈ x≈y x∈xs = Any.map (trans (sym x≈y)) x∈xs ∉-resp-≈ : ∀ {xs} → (_∉ xs) Respects _≈_ ∉-resp-≈ v≈w v∉xs w∈xs = v∉xs (∈-resp-≈ (sym v≈w) w∈xs) ∈-resp-≋ : ∀ {x} → (x ∈_) Respects _≋_ ∈-resp-≋ = Any.lift-resp (flip trans) ∉-resp-≋ : ∀ {x} → (x ∉_) Respects _≋_ ∉-resp-≋ xs≋ys v∉xs v∈ys = v∉xs (∈-resp-≋ (≋-sym xs≋ys) v∈ys) -- x ∉_ is equivalent to All (x ≉_) ∉⇒All[≉] : ∀ {x xs} → x ∉ xs → All (x ≉_) xs ∉⇒All[≉] = All.¬Any⇒All¬ _ All[≉]⇒∉ : ∀ {x xs} → All (x ≉_) xs → x ∉ xs All[≉]⇒∉ = All.All¬⇒¬Any -- index is injective in its first argument. index-injective : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → Any.index x₁∈xs ≡ Any.index x₂∈xs → x₁ ≈ x₂ index-injective (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x) index-injective (there x₁∈xs) (there x₂∈xs) eq = index-injective x₁∈xs x₂∈xs (suc-injective eq) ------------------------------------------------------------------------ -- Irrelevance module _ (S : Setoid c ℓ) where open Setoid S open Unique S open Membership S private ∉×∈⇒≉ : ∀ {x y xs} → All (y ≉_) xs → x ∈ xs → x ≉ y ∉×∈⇒≉ ≉s x∈xs x≈y = All[≉]⇒∉ S ≉s (∈-resp-≈ S x≈y x∈xs) unique⇒irrelevant : Binary.Irrelevant _≈_ → ∀ {xs} → Unique xs → Unary.Irrelevant (_∈ xs) unique⇒irrelevant ≈-irr _ (here p) (here q) = ≡.cong here (≈-irr p q) unique⇒irrelevant ≈-irr (_ ∷ u) (there p) (there q) = ≡.cong there (unique⇒irrelevant ≈-irr u p q) unique⇒irrelevant ≈-irr (≉s ∷ _) (here p) (there q) = contradiction p (∉×∈⇒≉ ≉s q) unique⇒irrelevant ≈-irr (≉s ∷ _) (there p) (here q) = contradiction q (∉×∈⇒≉ ≉s p) ------------------------------------------------------------------------ -- mapWith∈ module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁) open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_; refl to refl₂) open Equality S₁ using ([]; _∷_) renaming (_≋_ to _≋₁_) open Equality S₂ using () renaming (_≋_ to _≋₂_) open Membership S₁ mapWith∈-cong : ∀ {xs ys} → xs ≋₁ ys → (f : ∀ {x} → x ∈ xs → A₂) → (g : ∀ {y} → y ∈ ys → A₂) → (∀ {x y} → x ≈₁ y → (x∈xs : x ∈ xs) (y∈ys : y ∈ ys) → f x∈xs ≈₂ g y∈ys) → mapWith∈ xs f ≋₂ mapWith∈ ys g mapWith∈-cong [] f g cong = [] mapWith∈-cong (x≈y ∷ xs≋ys) f g cong = cong x≈y (here refl₁) (here refl₁) ∷ mapWith∈-cong xs≋ys (f ∘ there) (g ∘ there) (λ x≈y x∈xs y∈ys → cong x≈y (there x∈xs) (there y∈ys)) mapWith∈≗map : ∀ f xs → mapWith∈ xs (λ {x} _ → f x) ≋₂ map f xs mapWith∈≗map f [] = [] mapWith∈≗map f (x ∷ xs) = refl₂ ∷ mapWith∈≗map f xs module _ (S : Setoid c ℓ) where open Setoid S open Membership S length-mapWith∈ : ∀ {a} {A : Set a} xs {f : ∀ {x} → x ∈ xs → A} → length (mapWith∈ xs f) ≡ length xs length-mapWith∈ [] = ≡.refl length-mapWith∈ (x ∷ xs) = ≡.cong suc (length-mapWith∈ xs) mapWith∈-id : ∀ xs → mapWith∈ xs (λ {x} _ → x) ≡ xs mapWith∈-id [] = ≡.refl mapWith∈-id (x ∷ xs) = ≡.cong (x ∷_) (mapWith∈-id xs) map-mapWith∈ : ∀ {a b} {A : Set a} {B : Set b} → ∀ xs (f : ∀ {x} → x ∈ xs → A) (g : A → B) → map g (mapWith∈ xs f) ≡ mapWith∈ xs (g ∘′ f) map-mapWith∈ [] f g = ≡.refl map-mapWith∈ (x ∷ xs) f g = ≡.cong (_ ∷_) (map-mapWith∈ xs (f ∘ there) g) ------------------------------------------------------------------------ -- map module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where open Setoid S₁ renaming (_≈_ to _≈₁_) open Setoid S₂ renaming (_≈_ to _≈₂_) private module M₁ = Membership S₁; open M₁ using (find) renaming (_∈_ to _∈₁_) private module M₂ = Membership S₂; open M₂ using () renaming (_∈_ to _∈₂_) ∈-map⁺ : ∀ {f} → f Preserves _≈₁_ ⟶ _≈₂_ → ∀ {v xs} → v ∈₁ xs → f v ∈₂ map f xs ∈-map⁺ pres x∈xs = Any.map⁺ (Any.map pres x∈xs) ∈-map⁻ : ∀ {v xs f} → v ∈₂ map f xs → ∃ λ x → x ∈₁ xs × v ≈₂ f x ∈-map⁻ x∈map = find (Any.map⁻ x∈map) map-∷= : ∀ {f} (pres : f Preserves _≈₁_ ⟶ _≈₂_) → ∀ {xs x v} → (x∈xs : x ∈₁ xs) → map f (x∈xs M₁.∷= v) ≡ ∈-map⁺ pres x∈xs M₂.∷= f v map-∷= pres (here x≈y) = ≡.refl map-∷= pres (there x∈xs) = ≡.cong (_ ∷_) (map-∷= pres x∈xs) ------------------------------------------------------------------------ -- _++_ module _ (S : Setoid c ℓ) where open Membership S using (_∈_) open Setoid S open Equality S using (_≋_; _∷_; ≋-refl) ∈-++⁺ˡ : ∀ {v xs ys} → v ∈ xs → v ∈ xs ++ ys ∈-++⁺ˡ = Any.++⁺ˡ ∈-++⁺ʳ : ∀ {v} xs {ys} → v ∈ ys → v ∈ xs ++ ys ∈-++⁺ʳ = Any.++⁺ʳ ∈-++⁻ : ∀ {v} xs {ys} → v ∈ xs ++ ys → (v ∈ xs) ⊎ (v ∈ ys) ∈-++⁻ = Any.++⁻ ∈-++⁺∘++⁻ : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → [ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ (∈-++⁻ xs p) ≡ p ∈-++⁺∘++⁻ = Any.++⁺∘++⁻ ∈-++⁻∘++⁺ : ∀ {v} xs {ys} (p : v ∈ xs ⊎ v ∈ ys) → ∈-++⁻ xs ([ ∈-++⁺ˡ , ∈-++⁺ʳ xs ]′ p) ≡ p ∈-++⁻∘++⁺ = Any.++⁻∘++⁺ ∈-++↔ : ∀ {v xs ys} → (v ∈ xs ⊎ v ∈ ys) ↔ v ∈ xs ++ ys ∈-++↔ = Any.++↔ ∈-++-comm : ∀ {v} xs ys → v ∈ xs ++ ys → v ∈ ys ++ xs ∈-++-comm = Any.++-comm ∈-++-comm∘++-comm : ∀ {v} xs {ys} (p : v ∈ xs ++ ys) → ∈-++-comm ys xs (∈-++-comm xs ys p) ≡ p ∈-++-comm∘++-comm = Any.++-comm∘++-comm ∈-++↔++ : ∀ {v} xs ys → v ∈ xs ++ ys ↔ v ∈ ys ++ xs ∈-++↔++ = Any.++↔++ ∈-insert : ∀ xs {ys v w} → v ≈ w → v ∈ xs ++ [ w ] ++ ys ∈-insert xs = Any.++-insert xs ∈-∃++ : ∀ {v xs} → v ∈ xs → ∃₂ λ ys zs → ∃ λ w → v ≈ w × xs ≋ ys ++ [ w ] ++ zs ∈-∃++ (here px) = [] , _ , _ , px , ≋-refl ∈-∃++ (there {d} v∈xs) = let hs , _ , _ , v≈v′ , eq = ∈-∃++ v∈xs in d ∷ hs , _ , _ , v≈v′ , refl ∷ eq ------------------------------------------------------------------------ -- concat module _ (S : Setoid c ℓ) where open Setoid S using (_≈_) open Membership S using (_∈_) open Equality S using (≋-setoid) open Membership ≋-setoid using (find) renaming (_∈_ to _∈ₗ_) ∈-concat⁺ : ∀ {v xss} → Any (v ∈_) xss → v ∈ concat xss ∈-concat⁺ = Any.concat⁺ ∈-concat⁻ : ∀ {v} xss → v ∈ concat xss → Any (v ∈_) xss ∈-concat⁻ = Any.concat⁻ ∈-concat⁺′ : ∀ {v vs xss} → v ∈ vs → vs ∈ₗ xss → v ∈ concat xss ∈-concat⁺′ v∈vs = ∈-concat⁺ ∘ Any.map (flip (∈-resp-≋ S) v∈vs) ∈-concat⁻′ : ∀ {v} xss → v ∈ concat xss → ∃ λ xs → v ∈ xs × xs ∈ₗ xss ∈-concat⁻′ xss v∈c[xss] = let xs , xs∈xss , v∈xs = find (∈-concat⁻ xss v∈c[xss]) in xs , v∈xs , xs∈xss ------------------------------------------------------------------------ -- concatMap module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) {f : Carrier S₁ → List (Carrier S₂)} {xs y} where open Membership S₂ using (_∈_) ∈-concatMap⁺ : Any ((y ∈_) ∘ f) xs → y ∈ concatMap f xs ∈-concatMap⁺ = Any.concatMap⁺ f ∈-concatMap⁻ : y ∈ concatMap f xs → Any ((y ∈_) ∘ f) xs ∈-concatMap⁻ = Any.concatMap⁻ f ------------------------------------------------------------------------ -- reverse module _ (S : Setoid c ℓ) where open Membership S using (_∈_) reverse⁺ : ∀ {x xs} → x ∈ xs → x ∈ reverse xs reverse⁺ = Any.reverse⁺ reverse⁻ : ∀ {x xs} → x ∈ reverse xs → x ∈ xs reverse⁻ = Any.reverse⁻ ------------------------------------------------------------------------ -- cartesianProductWith module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) (S₃ : Setoid c₃ ℓ₃) where open Setoid S₁ renaming (_≈_ to _≈₁_; refl to refl₁) open Setoid S₂ renaming (_≈_ to _≈₂_) open Setoid S₃ renaming (_≈_ to _≈₃_) open Membership S₁ renaming (_∈_ to _∈₁_) open Membership S₂ renaming (_∈_ to _∈₂_) open Membership S₃ renaming (_∈_ to _∈₃_) ∈-cartesianProductWith⁺ : ∀ {f} → f Preserves₂ _≈₁_ ⟶ _≈₂_ ⟶ _≈₃_ → ∀ {xs ys a b} → a ∈₁ xs → b ∈₂ ys → f a b ∈₃ cartesianProductWith f xs ys ∈-cartesianProductWith⁺ pres = Any.cartesianProductWith⁺ _ pres ∈-cartesianProductWith⁻ : ∀ f xs ys {v} → v ∈₃ cartesianProductWith f xs ys → ∃₂ λ a b → a ∈₁ xs × b ∈₂ ys × v ≈₃ f a b ∈-cartesianProductWith⁻ f (x ∷ xs) ys v∈c with ∈-++⁻ S₃ (map (f x) ys) v∈c ... | inj₁ v∈map = let b , b∈ys , v≈fxb = ∈-map⁻ S₂ S₃ v∈map in x , b , here refl₁ , b∈ys , v≈fxb ... | inj₂ v∈com = let a , b , a∈xs , b∈ys , v≈fab = ∈-cartesianProductWith⁻ f xs ys v∈com in a , b , there a∈xs , b∈ys , v≈fab ------------------------------------------------------------------------ -- cartesianProduct module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where open Setoid S₁ renaming (Carrier to A) open Setoid S₂ renaming (Carrier to B) open Membership S₁ renaming (_∈_ to _∈₁_) open Membership S₂ renaming (_∈_ to _∈₂_) open Membership (S₁ ×ₛ S₂) renaming (_∈_ to _∈₁₂_) ∈-cartesianProduct⁺ : ∀ {x y xs ys} → x ∈₁ xs → y ∈₂ ys → (x , y) ∈₁₂ cartesianProduct xs ys ∈-cartesianProduct⁺ = Any.cartesianProduct⁺ ∈-cartesianProduct⁻ : ∀ xs ys {xy@(x , y) : A × B} → xy ∈₁₂ cartesianProduct xs ys → x ∈₁ xs × y ∈₂ ys ∈-cartesianProduct⁻ xs ys = Any.cartesianProduct⁻ xs ys ------------------------------------------------------------------------ -- applyUpTo module _ (S : Setoid c ℓ) where open Setoid S using (_≈_; refl) open Membership S using (_∈_) ∈-applyUpTo⁺ : ∀ f {i n} → i < n → f i ∈ applyUpTo f n ∈-applyUpTo⁺ f = Any.applyUpTo⁺ f refl ∈-applyUpTo⁻ : ∀ {v} f {n} → v ∈ applyUpTo f n → ∃ λ i → i < n × v ≈ f i ∈-applyUpTo⁻ = Any.applyUpTo⁻ ------------------------------------------------------------------------ -- applyDownFrom ∈-applyDownFrom⁺ : ∀ f {i n} → i < n → f i ∈ applyDownFrom f n ∈-applyDownFrom⁺ f = Any.applyDownFrom⁺ f refl ∈-applyDownFrom⁻ : ∀ {v} f {n} → v ∈ applyDownFrom f n → ∃ λ i → i < n × v ≈ f i ∈-applyDownFrom⁻ = Any.applyDownFrom⁻ ------------------------------------------------------------------------ -- tabulate module _ (S : Setoid c ℓ) where open Setoid S using (_≈_; refl) renaming (Carrier to A) open Membership S using (_∈_) ∈-tabulate⁺ : ∀ {n} {f : Fin n → A} i → f i ∈ tabulate f ∈-tabulate⁺ i = Any.tabulate⁺ i refl ∈-tabulate⁻ : ∀ {n} {f : Fin n → A} {v} → v ∈ tabulate f → ∃ λ i → v ≈ f i ∈-tabulate⁻ = Any.tabulate⁻ ------------------------------------------------------------------------ -- filter module _ (S : Setoid c ℓ) {P : Pred (Carrier S) p} (P? : Decidable P) (resp : P Respects (Setoid._≈_ S)) where open Setoid S using (_≈_; sym) open Membership S using (_∈_) ∈-filter⁺ : ∀ {v xs} → v ∈ xs → P v → v ∈ filter P? xs ∈-filter⁺ {xs = x ∷ _} (here v≈x) Pv with P? x ... | true because _ = here v≈x ... | false because [¬Px] = contradiction (resp v≈x Pv) (invert [¬Px]) ∈-filter⁺ {xs = x ∷ _} (there v∈xs) Pv with does (P? x) ... | true = there (∈-filter⁺ v∈xs Pv) ... | false = ∈-filter⁺ v∈xs Pv ∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v ∈-filter⁻ {xs = x ∷ xs} v∈f[x∷xs] with P? x ... | false because _ = Product.map there id (∈-filter⁻ v∈f[x∷xs]) ... | true because [Px] with v∈f[x∷xs] ... | here v≈x = here v≈x , resp (sym v≈x) (invert [Px]) ... | there v∈fxs = Product.map there id (∈-filter⁻ v∈fxs) ------------------------------------------------------------------------ -- map∘filter module _ (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) {P : Pred _ p} (P? : Decidable P) (resp : P Respects _) {f xs y} where open Setoid S₁ renaming (_≈_ to _≈₁_) open Setoid S₂ renaming (_≈_ to _≈₂_; sym to sym₂) open Membership S₁ renaming (_∈_ to _∈₁_) open Membership S₂ renaming (_∈_ to _∈₂_) ∈-map∘filter⁻ : y ∈₂ map f (filter P? xs) → ∃[ x ] x ∈₁ xs × y ≈₂ f x × P x ∈-map∘filter⁻ h = let x , x∈ , y≈ = ∈-map⁻ S₁ S₂ h y∈ , Py = ∈-filter⁻ S₁ P? resp x∈ in x , y∈ , y≈ , Py ∈-map∘filter⁺ : f Preserves _≈₁_ ⟶ _≈₂_ → ∃[ x ] x ∈₁ xs × y ≈₂ f x × P x → y ∈₂ map f (filter P? xs) ∈-map∘filter⁺ pres (x , x∈ , y≈ , Px) = ∈-resp-≈ S₂ (sym₂ y≈) $ ∈-map⁺ S₁ S₂ pres (∈-filter⁺ S₁ P? resp x∈ Px) ------------------------------------------------------------------------ -- derun and deduplicate module _ (S : Setoid c ℓ) {R : Rel (Carrier S) ℓ₂} (R? : Binary.Decidable R) where open Setoid S using (_≈_) open Membership S using (_∈_) ∈-derun⁺ : _≈_ Respectsʳ R → ∀ {xs z} → z ∈ xs → z ∈ derun R? xs ∈-derun⁺ ≈-resp-R z∈xs = Any.derun⁺ R? ≈-resp-R z∈xs ∈-derun⁻ : ∀ xs {z} → z ∈ derun R? xs → z ∈ xs ∈-derun⁻ xs z∈derun[R,xs] = Any.derun⁻ R? z∈derun[R,xs] ∈-deduplicate⁺ : _≈_ Respectsʳ (flip R) → ∀ {xs z} → z ∈ xs → z ∈ deduplicate R? xs ∈-deduplicate⁺ ≈-resp-R z∈xs = Any.deduplicate⁺ R? ≈-resp-R z∈xs ∈-deduplicate⁻ : ∀ xs {z} → z ∈ deduplicate R? xs → z ∈ xs ∈-deduplicate⁻ xs z∈dedup[R,xs] = Any.deduplicate⁻ R? z∈dedup[R,xs] deduplicate-∈⇔ : _≈_ Respectsʳ (flip R) → ∀ {xs z} → z ∈ xs ⇔ z ∈ deduplicate R? xs deduplicate-∈⇔ p = mk⇔ (∈-deduplicate⁺ p) (∈-deduplicate⁻ _) ------------------------------------------------------------------------ -- length module _ (S : Setoid c ℓ) where open Membership S using (_∈_) ∈-length : ∀ {x xs} → x ∈ xs → 0 < length xs ∈-length (here px) = z<s ∈-length (there x∈xs) = z<s ------------------------------------------------------------------------ -- lookup module _ (S : Setoid c ℓ) where open Setoid S using (refl) open Membership S using (_∈_) ∈-lookup : ∀ xs i → lookup xs i ∈ xs ∈-lookup (x ∷ xs) zero = here refl ∈-lookup (x ∷ xs) (suc i) = there (∈-lookup xs i) ------------------------------------------------------------------------ -- foldr module _ (S : Setoid c ℓ) {_•_ : Op₂ (Carrier S)} where open Setoid S using (_≈_; refl; sym; trans) open Membership S using (_∈_) foldr-selective : Selective _≈_ _•_ → ∀ e xs → (foldr _•_ e xs ≈ e) ⊎ (foldr _•_ e xs ∈ xs) foldr-selective •-sel i [] = inj₁ refl foldr-selective •-sel i (x ∷ xs) with •-sel x (foldr _•_ i xs) ... | inj₁ x•f≈x = inj₂ (here x•f≈x) ... | inj₂ x•f≈f with foldr-selective •-sel i xs ... | inj₁ f≈i = inj₁ (trans x•f≈f f≈i) ... | inj₂ f∈xs = inj₂ (∈-resp-≈ S (sym x•f≈f) (there f∈xs)) ------------------------------------------------------------------------ -- _∷=_ module _ (S : Setoid c ℓ) where open Setoid S open Membership S ∈-∷=⁺-updated : ∀ {xs x v} (x∈xs : x ∈ xs) → v ∈ (x∈xs ∷= v) ∈-∷=⁺-updated (here px) = here refl ∈-∷=⁺-updated (there pxs) = there (∈-∷=⁺-updated pxs) ∈-∷=⁺-untouched : ∀ {xs x y v} (x∈xs : x ∈ xs) → (¬ x ≈ y) → y ∈ xs → y ∈ (x∈xs ∷= v) ∈-∷=⁺-untouched (here x≈z) x≉y (here y≈z) = contradiction (trans x≈z (sym y≈z)) x≉y ∈-∷=⁺-untouched (here x≈z) x≉y (there y∈xs) = there y∈xs ∈-∷=⁺-untouched (there x∈xs) x≉y (here y≈z) = here y≈z ∈-∷=⁺-untouched (there x∈xs) x≉y (there y∈xs) = there (∈-∷=⁺-untouched x∈xs x≉y y∈xs) ∈-∷=⁻ : ∀ {xs x y v} (x∈xs : x ∈ xs) → (¬ y ≈ v) → y ∈ (x∈xs ∷= v) → y ∈ xs ∈-∷=⁻ (here x≈z) y≉v (here y≈v) = contradiction y≈v y≉v ∈-∷=⁻ (here x≈z) y≉v (there y∈) = there y∈ ∈-∷=⁻ (there x∈xs) y≉v (here y≈z) = here y≈z ∈-∷=⁻ (there x∈xs) y≉v (there y∈) = there (∈-∷=⁻ x∈xs y≉v y∈) ------------------------------------------------------------------------ -- Any/All symmetry wrt _∈_/_∉_ module _ (S : Setoid c ℓ) where open Setoid S using (sym) open Membership S Any-∈-swap : ∀ {xs ys} → Any (_∈ ys) xs → Any (_∈ xs) ys Any-∈-swap = Any.swap ∘ Any.map (Any.map sym) All-∉-swap : ∀ {xs ys} → All (_∉ ys) xs → All (_∉ xs) ys All-∉-swap p = All.¬Any⇒All¬ _ ((All.All¬⇒¬Any p) ∘ Any-∈-swap)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4