------------------------------------------------------------------------ -- The Agda standard library -- -- Induction over Subset ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Fin.Subset.Induction where open import Data.Nat.Base using (ℕ) open import Data.Nat.Induction using (<-wellFounded) open import Data.Fin.Subset using (Subset; ∁; _⊂_; _⊃_; ∣_∣) open import Data.Fin.Subset.Properties using (p⊂q⇒∣p∣<∣q∣; p⊂q⇒∁p⊃∁q) open import Induction using (RecStruct) open import Induction.WellFounded as WF open import Level using (Level) import Relation.Binary.Construct.On as On using (wellFounded) private variable ℓ : Level n : ℕ ------------------------------------------------------------------------ -- Re-export accessability open WF public using (Acc; acc) ------------------------------------------------------------------------ -- Complete induction based on _⊂_ ⊂-Rec : RecStruct (Subset n) ℓ ℓ ⊂-Rec = WfRec _⊂_ ⊂-wellFounded : WellFounded {A = Subset n} _⊂_ ⊂-wellFounded = Subrelation.wellFounded p⊂q⇒∣p∣<∣q∣ (On.wellFounded ∣_∣ <-wellFounded) ------------------------------------------------------------------------ -- Complete induction based on _⊃_ ⊃-Rec : RecStruct (Subset n) ℓ ℓ ⊃-Rec = WfRec _⊃_ ⊃-wellFounded : WellFounded {A = Subset n} _⊃_ ⊃-wellFounded = Subrelation.wellFounded p⊂q⇒∁p⊃∁q (On.wellFounded ∁ ⊂-wellFounded)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4