------------------------------------------------------------------------ -- The Agda standard library -- -- Properties for Conats ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --sized-types #-} module Codata.Sized.Conat.Properties where open import Codata.Sized.Conat open import Codata.Sized.Conat.Bisimilarity using (_⊢_≈_; refl; zero; suc) open import Codata.Sized.Thunk using (Thunk; Thunk^R; force) open import Data.Nat.Base using (ℕ; zero; suc) open import Function.Base using (_∋_) open import Relation.Binary.Definitions using (Decidable) open import Relation.Nullary.Decidable.Core using (yes; no; map′) open import Relation.Nullary.Negation.Core using (¬_) open import Size using (Size) private variable i : Size 0∸m≈0 : ∀ m → i ⊢ zero ∸ m ≈ zero 0∸m≈0 zero = refl 0∸m≈0 (suc m) = 0∸m≈0 m sℕ≤s⁻¹ : ∀ {m n} → suc m ℕ≤ suc n → m ℕ≤ n .force sℕ≤s⁻¹ (sℕ≤s p) = p infix 4 _ℕ≤?_ _ℕ≤?_ : Decidable _ℕ≤_ zero ℕ≤? n = yes zℕ≤n suc m ℕ≤? zero = no (λ ()) suc m ℕ≤? suc n = map′ sℕ≤s sℕ≤s⁻¹ (m ℕ≤? n .force) 0ℕ+-identity : ∀ {n} → i ⊢ 0 ℕ+ n ≈ n 0ℕ+-identity = refl +ℕ0-identity : ∀ {n} → i ⊢ n +ℕ 0 ≈ n +ℕ0-identity {n = zero} = zero +ℕ0-identity {n = suc n} = suc λ where .force → +ℕ0-identity
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4