------------------------------------------------------------------------ -- The Agda standard library -- -- An example of how Algebra.IdempotentCommutativeMonoidSolver can be -- used ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Algebra.Solver.IdempotentCommutativeMonoid.Example where import Algebra.Solver.IdempotentCommutativeMonoid as ICM-Solver open import Data.Bool.Base using (_∨_) open import Data.Bool.Properties using (∨-idempotentCommutativeMonoid) open import Data.Fin.Base using (zero; suc) open import Data.Vec.Base using ([]; _∷_) open import Relation.Binary.PropositionalEquality.Core using (_≡_) open ICM-Solver ∨-idempotentCommutativeMonoid test : ∀ x y z → (x ∨ y) ∨ (x ∨ z) ≡ (z ∨ y) ∨ x test a b c = let _∨_ = _⊕_ in prove 3 ((x ∨ y) ∨ (x ∨ z)) ((z ∨ y) ∨ x) (a ∷ b ∷ c ∷ []) where x = var zero y = var (suc zero) z = var (suc (suc zero))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4