------------------------------------------------------------------------ -- The Agda standard library -- -- An example of how Algebra.CommutativeMonoidSolver can be used ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Algebra.Solver.CommutativeMonoid.Example where open import Relation.Binary.PropositionalEquality.Core using (_≡_) open import Data.Bool.Base using (_∨_) open import Data.Bool.Properties using (∨-commutativeMonoid) open import Data.Fin.Base using (zero; suc) open import Data.Vec.Base using ([]; _∷_) open import Algebra.Solver.CommutativeMonoid ∨-commutativeMonoid test : ∀ x y z → (x ∨ y) ∨ (x ∨ z) ≡ (z ∨ y) ∨ (x ∨ x) test a b c = let _∨_ = _⊕_ in prove 3 ((x ∨ y) ∨ (x ∨ z)) ((z ∨ y) ∨ (x ∨ x)) (a ∷ b ∷ c ∷ []) where x = var zero y = var (suc zero) z = var (suc (suc zero))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4