------------------------------------------------------------------------ -- The Agda standard library -- -- Some basic properties of Quasigroup ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (MiddleBolLoop) module Algebra.Properties.MiddleBolLoop {m₁ m₂} (M : MiddleBolLoop m₁ m₂) where open MiddleBolLoop M open import Algebra.Definitions _≈_ open import Relation.Binary.Reasoning.Setoid setoid import Algebra.Properties.Loop as LoopProperties open LoopProperties loop public xyx\\x≈y\\x : ∀ x y → x ∙ ((y ∙ x) \\ x) ≈ y \\ x xyx\\x≈y\\x x y = begin x ∙ ((y ∙ x) \\ x) ≈⟨ middleBol x y x ⟩ (x // x) ∙ (y \\ x) ≈⟨ ∙-congʳ (x//x≈ε x) ⟩ ε ∙ (y \\ x) ≈⟨ identityˡ ((y \\ x)) ⟩ y \\ x ∎ xxz\\x≈x//z : ∀ x z → x ∙ ((x ∙ z) \\ x) ≈ x // z xxz\\x≈x//z x z = begin x ∙ ((x ∙ z) \\ x) ≈⟨ middleBol x x z ⟩ (x // z) ∙ (x \\ x) ≈⟨ ∙-congˡ (x\\x≈ε x) ⟩ (x // z) ∙ ε ≈⟨ identityʳ ((x // z)) ⟩ x // z ∎ xz\\x≈x//zx : ∀ x z → x ∙ (z \\ x) ≈ (x // z) ∙ x xz\\x≈x//zx x z = begin x ∙ (z \\ x) ≈⟨ ∙-congˡ (\\-congʳ( sym (identityˡ z))) ⟩ x ∙ ((ε ∙ z) \\ x) ≈⟨ middleBol x ε z ⟩ x // z ∙ (ε \\ x) ≈⟨ ∙-congˡ (ε\\x≈x x) ⟩ x // z ∙ x ∎ x//yzx≈x//zy\\x : ∀ x y z → (x // (y ∙ z)) ∙ x ≈ (x // z) ∙ (y \\ x) x//yzx≈x//zy\\x x y z = begin (x // (y ∙ z)) ∙ x ≈⟨ sym (xz\\x≈x//zx x ((y ∙ z))) ⟩ x ∙ ((y ∙ z) \\ x) ≈⟨ middleBol x y z ⟩ (x // z) ∙ (y \\ x) ∎ x//yxx≈y\\x : ∀ x y → (x // (y ∙ x)) ∙ x ≈ y \\ x x//yxx≈y\\x x y = begin (x // (y ∙ x)) ∙ x ≈⟨ x//yzx≈x//zy\\x x y x ⟩ (x // x) ∙ (y \\ x) ≈⟨ ∙-congʳ (x//x≈ε x) ⟩ ε ∙ (y \\ x) ≈⟨ identityˡ ((y \\ x)) ⟩ y \\ x ∎ x//xzx≈x//z : ∀ x z → (x // (x ∙ z)) ∙ x ≈ x // z x//xzx≈x//z x z = begin (x // (x ∙ z)) ∙ x ≈⟨ x//yzx≈x//zy\\x x x z ⟩ (x // z) ∙ (x \\ x) ≈⟨ ∙-congˡ (x\\x≈ε x) ⟩ (x // z) ∙ ε ≈⟨ identityʳ (x // z) ⟩ x // z ∎
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4