------------------------------------------------------------------------ -- The Agda standard library -- -- Some basic properties of Loop ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (Loop) module Algebra.Properties.Loop {l₁ l₂} (L : Loop l₁ l₂) where open Loop L open import Algebra.Definitions _≈_ open import Algebra.Properties.Quasigroup quasigroup open import Data.Product.Base using (proj₂) open import Relation.Binary.Reasoning.Setoid setoid x//x≈ε : ∀ x → x // x ≈ ε x//x≈ε x = sym (x≈z//y _ _ _ (identityˡ x)) x\\x≈ε : ∀ x → x \\ x ≈ ε x\\x≈ε x = sym (y≈x\\z _ _ _ (identityʳ x)) ε\\x≈x : ∀ x → ε \\ x ≈ x ε\\x≈x x = sym (y≈x\\z _ _ _ (identityˡ x)) x//ε≈x : ∀ x → x // ε ≈ x x//ε≈x x = sym (x≈z//y _ _ _ (identityʳ x)) identityˡ-unique : ∀ x y → x ∙ y ≈ y → x ≈ ε identityˡ-unique x y eq = begin x ≈⟨ x≈z//y x y y eq ⟩ y // y ≈⟨ x//x≈ε y ⟩ ε ∎ identityʳ-unique : ∀ x y → x ∙ y ≈ x → y ≈ ε identityʳ-unique x y eq = begin y ≈⟨ y≈x\\z x y x eq ⟩ x \\ x ≈⟨ x\\x≈ε x ⟩ ε ∎ identity-unique : ∀ {x} → Identity x _∙_ → x ≈ ε identity-unique {x} id = identityˡ-unique x x (proj₂ id x)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4