A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Algebra.Properties.CommutativeSemiring.Binomial.html below:

Algebra.Properties.CommutativeSemiring.Binomial

Algebra.Properties.CommutativeSemiring.Binomial
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Binomial Theorem for Commutative Semirings
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Bundles using (CommutativeSemiring)

module Algebra.Properties.CommutativeSemiring.Binomial {a } (S : CommutativeSemiring a ) where

open CommutativeSemiring S
open import Algebra.Properties.Semiring.Exp semiring using (_^_)
import Algebra.Properties.Semiring.Binomial semiring as Binomial
open Binomial public hiding (theorem)

------------------------------------------------------------------------
-- Here it is

theorem :  n x y  (x + y) ^ n  binomialExpansion x y n
theorem n x y = Binomial.theorem x y (*-comm x y) n


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4