------------------------------------------------------------------------ -- The Agda standard library -- -- The Binomial Theorem for Commutative Semirings ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (CommutativeSemiring) module Algebra.Properties.CommutativeSemiring.Binomial {a ℓ} (S : CommutativeSemiring a ℓ) where open CommutativeSemiring S open import Algebra.Properties.Semiring.Exp semiring using (_^_) import Algebra.Properties.Semiring.Binomial semiring as Binomial open Binomial public hiding (theorem) ------------------------------------------------------------------------ -- Here it is theorem : ∀ n x y → (x + y) ^ n ≈ binomialExpansion x y n theorem n x y = Binomial.theorem x y (*-comm x y) n
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4