------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of divisibility over commutative semigroups ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra using (CommutativeSemigroup) module Algebra.Properties.CommutativeSemigroup.Divisibility {a ℓ} (commutativeSemigroup : CommutativeSemigroup a ℓ) where open import Data.Product.Base using (_,_) open CommutativeSemigroup commutativeSemigroup open import Algebra.Properties.CommutativeSemigroup commutativeSemigroup using (medial; x∙yz≈xz∙y; x∙yz≈y∙xz) open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Re-export the contents of divisibility over semigroups open import Algebra.Properties.Semigroup.Divisibility semigroup public ------------------------------------------------------------------------ -- Re-export the contents of divisibility over commutative magmas open import Algebra.Properties.CommutativeMagma.Divisibility commutativeMagma public using (x∣xy; xy≈z⇒x∣z; ∣-factors; ∣-factors-≈) ------------------------------------------------------------------------ -- New properties x∣y∧z∣x/y⇒xz∣y : ∀ {x y z} → ((x/y , _) : x ∣ y) → z ∣ x/y → x ∙ z ∣ y x∣y∧z∣x/y⇒xz∣y {x} {y} {z} (x/y , x/y∙x≈y) (p , pz≈x/y) = p , (begin p ∙ (x ∙ z) ≈⟨ x∙yz≈xz∙y p x z ⟩ (p ∙ z) ∙ x ≈⟨ ∙-congʳ pz≈x/y ⟩ x/y ∙ x ≈⟨ x/y∙x≈y ⟩ y ∎) ∙-cong-∣ : ∀ {x y a b} → x ∣ y → a ∣ b → x ∙ a ∣ y ∙ b ∙-cong-∣ {x} {y} {a} {b} (p , px≈y) (q , qa≈b) = p ∙ q , (begin (p ∙ q) ∙ (x ∙ a) ≈⟨ medial p q x a ⟩ (p ∙ x) ∙ (q ∙ a) ≈⟨ ∙-cong px≈y qa≈b ⟩ y ∙ b ∎) x∣y⇒zx∣zy : ∀ {x y} z → x ∣ y → z ∙ x ∣ z ∙ y x∣y⇒zx∣zy {x} {y} z (q , qx≈y) = q , (begin q ∙ (z ∙ x) ≈⟨ x∙yz≈y∙xz q z x ⟩ z ∙ (q ∙ x) ≈⟨ ∙-congˡ qx≈y ⟩ z ∙ y ∎)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4