A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Algebra.Properties.CommutativeSemigroup.Divisibility.html below:

Algebra.Properties.CommutativeSemigroup.Divisibility

------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of divisibility over commutative semigroups
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra using (CommutativeSemigroup)

module Algebra.Properties.CommutativeSemigroup.Divisibility
  {a } (commutativeSemigroup : CommutativeSemigroup a )
  where

open import Data.Product.Base using (_,_)

open CommutativeSemigroup commutativeSemigroup
open import Algebra.Properties.CommutativeSemigroup commutativeSemigroup
  using (medial; x∙yz≈xz∙y; x∙yz≈y∙xz)
open import Relation.Binary.Reasoning.Setoid setoid

------------------------------------------------------------------------
-- Re-export the contents of divisibility over semigroups

open import Algebra.Properties.Semigroup.Divisibility semigroup public

------------------------------------------------------------------------
-- Re-export the contents of divisibility over commutative magmas

open import Algebra.Properties.CommutativeMagma.Divisibility commutativeMagma public
  using (x∣xy; xy≈z⇒x∣z; ∣-factors; ∣-factors-≈)

------------------------------------------------------------------------
-- New properties

x∣y∧z∣x/y⇒xz∣y :  {x y z}  ((x/y , _) : x  y)  z  x/y  x  z  y
x∣y∧z∣x/y⇒xz∣y {x} {y} {z} (x/y , x/y∙x≈y) (p , pz≈x/y) = p , (begin
  p  (x  z)  ≈⟨ x∙yz≈xz∙y p x z 
  (p  z)  x  ≈⟨ ∙-congʳ pz≈x/y 
  x/y  x      ≈⟨ x/y∙x≈y 
  y            )

∙-cong-∣ :  {x y a b}  x  y  a  b  x  a  y  b
∙-cong-∣ {x} {y} {a} {b} (p , px≈y) (q , qa≈b) = p  q , (begin
  (p  q)  (x  a) ≈⟨ medial p q x a 
  (p  x)  (q  a) ≈⟨ ∙-cong px≈y qa≈b 
  y  b )

x∣y⇒zx∣zy :  {x y} z  x  y  z  x  z  y
x∣y⇒zx∣zy {x} {y} z (q , qx≈y) = q , (begin
 q  (z  x)  ≈⟨ x∙yz≈y∙xz q z x 
 z  (q  x)  ≈⟨ ∙-congˡ qx≈y 
 z  y        )

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4