------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of semimodules. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (CommutativeSemiring) open import Algebra.Module.Bundles using (Semimodule) open import Level using (Level) module Algebra.Module.Properties.Semimodule {r ℓr m ℓm : Level} {semiring : CommutativeSemiring r ℓr} (semimod : Semimodule semiring m ℓm) where open CommutativeSemiring semiring open Semimodule semimod open import Relation.Binary.Reasoning.Setoid ≈ᴹ-setoid open import Relation.Nullary.Negation using (contraposition) x≈0⇒x*y≈0 : ∀ {x y} → x ≈ 0# → x *ₗ y ≈ᴹ 0ᴹ x≈0⇒x*y≈0 {x} {y} x≈0 = begin x *ₗ y ≈⟨ *ₗ-congʳ x≈0 ⟩ 0# *ₗ y ≈⟨ *ₗ-zeroˡ y ⟩ 0ᴹ ∎ y≈0⇒x*y≈0 : ∀ {x y} → y ≈ᴹ 0ᴹ → x *ₗ y ≈ᴹ 0ᴹ y≈0⇒x*y≈0 {x} {y} y≈0 = begin x *ₗ y ≈⟨ *ₗ-congˡ y≈0 ⟩ x *ₗ 0ᴹ ≈⟨ *ₗ-zeroʳ x ⟩ 0ᴹ ∎ x*y≉0⇒x≉0 : ∀ {x y} → x *ₗ y ≉ᴹ 0ᴹ → x ≉ 0# x*y≉0⇒x≉0 = contraposition x≈0⇒x*y≈0 x*y≉0⇒y≉0 : ∀ {x y} → x *ₗ y ≉ᴹ 0ᴹ → y ≉ᴹ 0ᴹ x*y≉0⇒y≉0 = contraposition y≈0⇒x*y≈0
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4