------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between right modules ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Module.Bundles.Raw using (RawRightModule) open import Algebra.Module.Morphism.Structures using (IsRightModuleMonomorphism) module Algebra.Module.Morphism.RightModuleMonomorphism {r a b ℓ₁ ℓ₂} {R : Set r} {M : RawRightModule R a ℓ₁} {N : RawRightModule R b ℓ₂} {⟦_⟧} (isRightModuleMonomorphism : IsRightModuleMonomorphism M N ⟦_⟧) where open IsRightModuleMonomorphism isRightModuleMonomorphism module M = RawRightModule M module N = RawRightModule N open import Algebra.Bundles using (Ring) open import Algebra.Core using (Op₂) open import Algebra.Module.Structures using (IsRightModule) open import Algebra.Structures using (IsRing) open import Relation.Binary.Core using (Rel) ------------------------------------------------------------------------ -- Re-exports open import Algebra.Morphism.GroupMonomorphism +ᴹ-isGroupMonomorphism public using () renaming ( inverseˡ to -ᴹ‿inverseˡ ; inverseʳ to -ᴹ‿inverseʳ ; inverse to -ᴹ‿inverse ; ⁻¹-cong to -ᴹ‿cong ; ⁻¹-distrib-∙ to -ᴹ‿distrib-+ᴹ ; isGroup to +ᴹ-isGroup ; isAbelianGroup to +ᴹ-isAbelianGroup ) open import Algebra.Module.Morphism.RightSemimoduleMonomorphism isRightSemimoduleMonomorphism public ------------------------------------------------------------------------ -- Structures module _ {ℓr} {_≈_ : Rel R ℓr} {_+_ _*_ -_ 0# 1#} (R-isRing : IsRing _≈_ _+_ _*_ -_ 0# 1#) where private R-ring : Ring _ _ R-ring = record { isRing = R-isRing} open IsRing R-isRing isRightModule : IsRightModule R-ring N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N.-ᴹ_ N._*ᵣ_ → IsRightModule R-ring M._≈ᴹ_ M._+ᴹ_ M.0ᴹ M.-ᴹ_ M._*ᵣ_ isRightModule isRightModule = record { isRightSemimodule = isRightSemimodule isSemiring NN.isRightSemimodule ; -ᴹ‿cong = -ᴹ‿cong NN.+ᴹ-isMagma NN.-ᴹ‿cong ; -ᴹ‿inverse = -ᴹ‿inverse NN.+ᴹ-isMagma NN.-ᴹ‿inverse } where module NN = IsRightModule isRightModule
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4