------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between left semimodules ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Module.Bundles.Raw using (RawLeftSemimodule) open import Algebra.Module.Morphism.Structures using (IsLeftSemimoduleMonomorphism) module Algebra.Module.Morphism.LeftSemimoduleMonomorphism {r a b ℓ₁ ℓ₂} {R : Set r} {M₁ : RawLeftSemimodule R a ℓ₁} {M₂ : RawLeftSemimodule R b ℓ₂} {⟦_⟧} (isLeftSemimoduleMonomorphism : IsLeftSemimoduleMonomorphism M₁ M₂ ⟦_⟧) where open IsLeftSemimoduleMonomorphism isLeftSemimoduleMonomorphism private module M = RawLeftSemimodule M₁ module N = RawLeftSemimodule M₂ open import Algebra.Bundles using (Semiring) open import Algebra.Core using (Op₂) import Algebra.Module.Definitions.Left as LeftDefs open import Algebra.Module.Structures using (IsLeftSemimodule) open import Algebra.Structures using (IsSemiring; IsMagma) open import Function.Base using (flip; _$_) open import Level using (Level) open import Relation.Binary.Core using (Rel) import Relation.Binary.Reasoning.Setoid as SetoidReasoning private variable ℓr : Level _≈_ : Rel R ℓr _+_ _*_ : Op₂ R 0# 1# : R ------------------------------------------------------------------------ -- Re-export most properties of monoid monomorphisms open import Algebra.Morphism.MonoidMonomorphism +ᴹ-isMonoidMonomorphism public using () renaming ( cong to +ᴹ-cong ; assoc to +ᴹ-assoc ; comm to +ᴹ-comm ; identityˡ to +ᴹ-identityˡ ; identityʳ to +ᴹ-identityʳ ; identity to +ᴹ-identity ; isMagma to +ᴹ-isMagma ; isSemigroup to +ᴹ-isSemigroup ; isMonoid to +ᴹ-isMonoid ; isCommutativeMonoid to +ᴹ-isCommutativeMonoid ) ---------------------------------------------------------------------------------- -- Properties module _ (+ᴹ-isMagma : IsMagma N._≈ᴹ_ N._+ᴹ_) where open IsMagma +ᴹ-isMagma using (setoid) renaming (∙-cong to +ᴹ-cong′) open SetoidReasoning setoid module MDefs = LeftDefs R M._≈ᴹ_ module NDefs = LeftDefs R N._≈ᴹ_ *ₗ-cong : NDefs.Congruent _≈_ N._*ₗ_ → MDefs.Congruent _≈_ M._*ₗ_ *ₗ-cong *ₗ-cong {x} {y} {u} {v} x≈y u≈ᴹv = injective $ begin ⟦ x M.*ₗ u ⟧ ≈⟨ *ₗ-homo x u ⟩ x N.*ₗ ⟦ u ⟧ ≈⟨ *ₗ-cong x≈y (⟦⟧-cong u≈ᴹv) ⟩ y N.*ₗ ⟦ v ⟧ ≈˘⟨ *ₗ-homo y v ⟩ ⟦ y M.*ₗ v ⟧ ∎ *ₗ-zeroˡ : NDefs.LeftZero 0# N.0ᴹ N._*ₗ_ → MDefs.LeftZero 0# M.0ᴹ M._*ₗ_ *ₗ-zeroˡ {0# = 0#} *ₗ-zeroˡ x = injective $ begin ⟦ 0# M.*ₗ x ⟧ ≈⟨ *ₗ-homo 0# x ⟩ 0# N.*ₗ ⟦ x ⟧ ≈⟨ *ₗ-zeroˡ ⟦ x ⟧ ⟩ N.0ᴹ ≈˘⟨ 0ᴹ-homo ⟩ ⟦ M.0ᴹ ⟧ ∎ *ₗ-distribʳ : N._*ₗ_ NDefs.DistributesOverʳ _+_ ⟶ N._+ᴹ_ → M._*ₗ_ MDefs.DistributesOverʳ _+_ ⟶ M._+ᴹ_ *ₗ-distribʳ {_+_ = _+_} *ₗ-distribʳ x m n = injective $ begin ⟦ (m + n) M.*ₗ x ⟧ ≈⟨ *ₗ-homo (m + n) x ⟩ (m + n) N.*ₗ ⟦ x ⟧ ≈⟨ *ₗ-distribʳ ⟦ x ⟧ m n ⟩ m N.*ₗ ⟦ x ⟧ N.+ᴹ n N.*ₗ ⟦ x ⟧ ≈˘⟨ +ᴹ-cong′ (*ₗ-homo m x) (*ₗ-homo n x) ⟩ ⟦ m M.*ₗ x ⟧ N.+ᴹ ⟦ n M.*ₗ x ⟧ ≈˘⟨ +ᴹ-homo (m M.*ₗ x) (n M.*ₗ x) ⟩ ⟦ m M.*ₗ x M.+ᴹ n M.*ₗ x ⟧ ∎ *ₗ-identityˡ : NDefs.LeftIdentity 1# N._*ₗ_ → MDefs.LeftIdentity 1# M._*ₗ_ *ₗ-identityˡ {1# = 1#} *ₗ-identityˡ m = injective $ begin ⟦ 1# M.*ₗ m ⟧ ≈⟨ *ₗ-homo 1# m ⟩ 1# N.*ₗ ⟦ m ⟧ ≈⟨ *ₗ-identityˡ ⟦ m ⟧ ⟩ ⟦ m ⟧ ∎ *ₗ-assoc : NDefs.LeftCongruent N._*ₗ_ → NDefs.Associative _*_ N._*ₗ_ → MDefs.Associative _*_ M._*ₗ_ *ₗ-assoc {_*_ = _*_} *ₗ-congˡ *ₗ-assoc x y m = injective $ begin ⟦ (x * y) M.*ₗ m ⟧ ≈⟨ *ₗ-homo (x * y) m ⟩ (x * y) N.*ₗ ⟦ m ⟧ ≈⟨ *ₗ-assoc x y ⟦ m ⟧ ⟩ x N.*ₗ y N.*ₗ ⟦ m ⟧ ≈˘⟨ *ₗ-congˡ (*ₗ-homo y m) ⟩ x N.*ₗ ⟦ y M.*ₗ m ⟧ ≈˘⟨ *ₗ-homo x (y M.*ₗ m) ⟩ ⟦ x M.*ₗ y M.*ₗ m ⟧ ∎ *ₗ-zeroʳ : NDefs.LeftCongruent N._*ₗ_ → NDefs.RightZero N.0ᴹ N._*ₗ_ → MDefs.RightZero M.0ᴹ M._*ₗ_ *ₗ-zeroʳ *ₗ-congˡ *ₗ-zeroʳ x = injective $ begin ⟦ x M.*ₗ M.0ᴹ ⟧ ≈⟨ *ₗ-homo x M.0ᴹ ⟩ x N.*ₗ ⟦ M.0ᴹ ⟧ ≈⟨ *ₗ-congˡ 0ᴹ-homo ⟩ x N.*ₗ N.0ᴹ ≈⟨ *ₗ-zeroʳ x ⟩ N.0ᴹ ≈˘⟨ 0ᴹ-homo ⟩ ⟦ M.0ᴹ ⟧ ∎ *ₗ-distribˡ : NDefs.LeftCongruent N._*ₗ_ → N._*ₗ_ NDefs.DistributesOverˡ N._+ᴹ_ → M._*ₗ_ MDefs.DistributesOverˡ M._+ᴹ_ *ₗ-distribˡ *ₗ-congˡ *ₗ-distribˡ x m n = injective $ begin ⟦ x M.*ₗ (m M.+ᴹ n) ⟧ ≈⟨ *ₗ-homo x (m M.+ᴹ n) ⟩ x N.*ₗ ⟦ m M.+ᴹ n ⟧ ≈⟨ *ₗ-congˡ (+ᴹ-homo m n) ⟩ x N.*ₗ (⟦ m ⟧ N.+ᴹ ⟦ n ⟧) ≈⟨ *ₗ-distribˡ x ⟦ m ⟧ ⟦ n ⟧ ⟩ x N.*ₗ ⟦ m ⟧ N.+ᴹ x N.*ₗ ⟦ n ⟧ ≈˘⟨ +ᴹ-cong′ (*ₗ-homo x m) (*ₗ-homo x n) ⟩ ⟦ x M.*ₗ m ⟧ N.+ᴹ ⟦ x M.*ₗ n ⟧ ≈˘⟨ +ᴹ-homo (x M.*ₗ m) (x M.*ₗ n) ⟩ ⟦ x M.*ₗ m M.+ᴹ x M.*ₗ n ⟧ ∎ ------------------------------------------------------------------------ -- Structures module _ (R-isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1#) where private R-semiring : Semiring _ _ R-semiring = record { isSemiring = R-isSemiring } isLeftSemimodule : IsLeftSemimodule R-semiring N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N._*ₗ_ → IsLeftSemimodule R-semiring M._≈ᴹ_ M._+ᴹ_ M.0ᴹ M._*ₗ_ isLeftSemimodule isLeftSemimodule = record { +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid NN.+ᴹ-isCommutativeMonoid ; isPreleftSemimodule = record { *ₗ-cong = *ₗ-cong NN.+ᴹ-isMagma NN.*ₗ-cong ; *ₗ-zeroˡ = *ₗ-zeroˡ NN.+ᴹ-isMagma NN.*ₗ-zeroˡ ; *ₗ-distribʳ = *ₗ-distribʳ NN.+ᴹ-isMagma NN.*ₗ-distribʳ ; *ₗ-identityˡ = *ₗ-identityˡ NN.+ᴹ-isMagma NN.*ₗ-identityˡ ; *ₗ-assoc = *ₗ-assoc NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-assoc ; *ₗ-zeroʳ = *ₗ-zeroʳ NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-zeroʳ ; *ₗ-distribˡ = *ₗ-distribˡ NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-distribˡ } } where module NN = IsLeftSemimodule isLeftSemimodule
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4