------------------------------------------------------------------------ -- The Agda standard library -- -- The identity morphism for module-like algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --safe --cubical-compatible #-} module Algebra.Module.Morphism.Construct.Identity where open import Algebra.Module.Bundles.Raw open import Algebra.Module.Morphism.Structures using ( module LeftSemimoduleMorphisms ; module LeftModuleMorphisms ; module RightSemimoduleMorphisms ; module RightModuleMorphisms ; module BisemimoduleMorphisms ; module BimoduleMorphisms ; module SemimoduleMorphisms ; module ModuleMorphisms ) open import Algebra.Morphism.Construct.Identity using ( isMonoidHomomorphism; isGroupHomomorphism) open import Data.Product.Base using (_,_) open import Function.Base using (id) import Function.Construct.Identity as Id open import Level using (Level) open import Relation.Binary.Definitions using (Reflexive) private variable r s m ℓm : Level module _ {R : Set r} (M : RawLeftSemimodule R m ℓm) (open RawLeftSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open LeftSemimoduleMorphisms M M isLeftSemimoduleHomomorphism : IsLeftSemimoduleHomomorphism id isLeftSemimoduleHomomorphism = record { +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism _ ≈ᴹ-refl ; *ₗ-homo = λ _ _ → ≈ᴹ-refl } isLeftSemimoduleMonomorphism : IsLeftSemimoduleMonomorphism id isLeftSemimoduleMonomorphism = record { isLeftSemimoduleHomomorphism = isLeftSemimoduleHomomorphism ; injective = id } isLeftSemimoduleIsomorphism : IsLeftSemimoduleIsomorphism id isLeftSemimoduleIsomorphism = record { isLeftSemimoduleMonomorphism = isLeftSemimoduleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} (M : RawLeftModule R m ℓm) (open RawLeftModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open LeftModuleMorphisms M M isLeftModuleHomomorphism : IsLeftModuleHomomorphism id isLeftModuleHomomorphism = record { +ᴹ-isGroupHomomorphism = isGroupHomomorphism _ ≈ᴹ-refl ; *ₗ-homo = λ _ _ → ≈ᴹ-refl } isLeftModuleMonomorphism : IsLeftModuleMonomorphism id isLeftModuleMonomorphism = record { isLeftModuleHomomorphism = isLeftModuleHomomorphism ; injective = id } isLeftModuleIsomorphism : IsLeftModuleIsomorphism id isLeftModuleIsomorphism = record { isLeftModuleMonomorphism = isLeftModuleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} (M : RawRightSemimodule R m ℓm) (open RawRightSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open RightSemimoduleMorphisms M M isRightSemimoduleHomomorphism : IsRightSemimoduleHomomorphism id isRightSemimoduleHomomorphism = record { +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism _ ≈ᴹ-refl ; *ᵣ-homo = λ _ _ → ≈ᴹ-refl } isRightSemimoduleMonomorphism : IsRightSemimoduleMonomorphism id isRightSemimoduleMonomorphism = record { isRightSemimoduleHomomorphism = isRightSemimoduleHomomorphism ; injective = id } isRightSemimoduleIsomorphism : IsRightSemimoduleIsomorphism id isRightSemimoduleIsomorphism = record { isRightSemimoduleMonomorphism = isRightSemimoduleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} (M : RawRightModule R m ℓm) (open RawRightModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open RightModuleMorphisms M M isRightModuleHomomorphism : IsRightModuleHomomorphism id isRightModuleHomomorphism = record { +ᴹ-isGroupHomomorphism = isGroupHomomorphism _ ≈ᴹ-refl ; *ᵣ-homo = λ _ _ → ≈ᴹ-refl } isRightModuleMonomorphism : IsRightModuleMonomorphism id isRightModuleMonomorphism = record { isRightModuleHomomorphism = isRightModuleHomomorphism ; injective = id } isRightModuleIsomorphism : IsRightModuleIsomorphism id isRightModuleIsomorphism = record { isRightModuleMonomorphism = isRightModuleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} {S : Set s} (M : RawBisemimodule R S m ℓm) (open RawBisemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open BisemimoduleMorphisms M M isBisemimoduleHomomorphism : IsBisemimoduleHomomorphism id isBisemimoduleHomomorphism = record { +ᴹ-isMonoidHomomorphism = isMonoidHomomorphism _ ≈ᴹ-refl ; *ₗ-homo = λ _ _ → ≈ᴹ-refl ; *ᵣ-homo = λ _ _ → ≈ᴹ-refl } isBisemimoduleMonomorphism : IsBisemimoduleMonomorphism id isBisemimoduleMonomorphism = record { isBisemimoduleHomomorphism = isBisemimoduleHomomorphism ; injective = id } isBisemimoduleIsomorphism : IsBisemimoduleIsomorphism id isBisemimoduleIsomorphism = record { isBisemimoduleMonomorphism = isBisemimoduleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} {S : Set s} (M : RawBimodule R S m ℓm) (open RawBimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open BimoduleMorphisms M M isBimoduleHomomorphism : IsBimoduleHomomorphism id isBimoduleHomomorphism = record { +ᴹ-isGroupHomomorphism = isGroupHomomorphism _ ≈ᴹ-refl ; *ₗ-homo = λ _ _ → ≈ᴹ-refl ; *ᵣ-homo = λ _ _ → ≈ᴹ-refl } isBimoduleMonomorphism : IsBimoduleMonomorphism id isBimoduleMonomorphism = record { isBimoduleHomomorphism = isBimoduleHomomorphism ; injective = id } isBimoduleIsomorphism : IsBimoduleIsomorphism id isBimoduleIsomorphism = record { isBimoduleMonomorphism = isBimoduleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} (M : RawSemimodule R m ℓm) (open RawSemimodule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open SemimoduleMorphisms M M isSemimoduleHomomorphism : IsSemimoduleHomomorphism id isSemimoduleHomomorphism = record { isBisemimoduleHomomorphism = isBisemimoduleHomomorphism _ ≈ᴹ-refl } isSemimoduleMonomorphism : IsSemimoduleMonomorphism id isSemimoduleMonomorphism = record { isSemimoduleHomomorphism = isSemimoduleHomomorphism ; injective = id } isSemimoduleIsomorphism : IsSemimoduleIsomorphism id isSemimoduleIsomorphism = record { isSemimoduleMonomorphism = isSemimoduleMonomorphism ; surjective = Id.surjective _ } module _ {R : Set r} (M : RawModule R m ℓm) (open RawModule M) (≈ᴹ-refl : Reflexive _≈ᴹ_) where open ModuleMorphisms M M isModuleHomomorphism : IsModuleHomomorphism id isModuleHomomorphism = record { isBimoduleHomomorphism = isBimoduleHomomorphism _ ≈ᴹ-refl } isModuleMonomorphism : IsModuleMonomorphism id isModuleMonomorphism = record { isModuleHomomorphism = isModuleHomomorphism ; injective = id } isModuleIsomorphism : IsModuleIsomorphism id isModuleIsomorphism = record { isModuleMonomorphism = isModuleMonomorphism ; surjective = Id.surjective _ }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4