------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of a monomorphism between bimodules ------------------------------------------------------------------------ {-# OPTIONS --safe --cubical-compatible #-} open import Algebra.Module.Bundles.Raw using (RawBimodule) open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism) module Algebra.Module.Morphism.BimoduleMonomorphism {r s a b ℓ₁ ℓ₂} {R : Set r} {S : Set s} {M : RawBimodule R S a ℓ₁} {N : RawBimodule R S b ℓ₂} {⟦_⟧} (isBimoduleMonomorphism : IsBimoduleMonomorphism M N ⟦_⟧) where open IsBimoduleMonomorphism isBimoduleMonomorphism private module M = RawBimodule M module N = RawBimodule N open import Algebra.Bundles using (Ring) open import Algebra.Module.Structures using (IsBimodule) open import Algebra.Structures using (IsRing) open import Relation.Binary.Core using (Rel) ------------------------------------------------------------------------ -- Re-exports open import Algebra.Morphism.GroupMonomorphism +ᴹ-isGroupMonomorphism public using () renaming ( inverseˡ to -ᴹ‿inverseˡ ; inverseʳ to -ᴹ‿inverseʳ ; inverse to -ᴹ‿inverse ; ⁻¹-cong to -ᴹ‿cong ; ⁻¹-distrib-∙ to -ᴹ‿distrib-+ᴹ ; isGroup to +ᴹ-isGroup ; isAbelianGroup to +ᴹ-isAbelianGroup ) open import Algebra.Module.Morphism.BisemimoduleMonomorphism isBisemimoduleMonomorphism public ------------------------------------------------------------------------ -- Structures module _ {ℓr} {_≈r_ : Rel R ℓr} {_+r_ _*r_ -r_ 0r 1r} {ℓs} {_≈s_ : Rel S ℓs} {_+s_ _*s_ -s_ 0s 1s} (R-isRing : IsRing _≈r_ _+r_ _*r_ -r_ 0r 1r) (S-isRing : IsRing _≈s_ _+s_ _*s_ -s_ 0s 1s) where private R-ring : Ring _ _ R-ring = record { isRing = R-isRing } S-ring : Ring _ _ S-ring = record { isRing = S-isRing } module R = IsRing R-isRing module S = IsRing S-isRing isBimodule : IsBimodule R-ring S-ring N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N.-ᴹ_ N._*ₗ_ N._*ᵣ_ → IsBimodule R-ring S-ring M._≈ᴹ_ M._+ᴹ_ M.0ᴹ M.-ᴹ_ M._*ₗ_ M._*ᵣ_ isBimodule isBimodule = record { isBisemimodule = isBisemimodule R.isSemiring S.isSemiring NN.isBisemimodule ; -ᴹ‿cong = -ᴹ‿cong NN.+ᴹ-isMagma NN.-ᴹ‿cong ; -ᴹ‿inverse = -ᴹ‿inverse NN.+ᴹ-isMagma NN.-ᴹ‿inverse } where module NN = IsBimodule isBimodule
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4