------------------------------------------------------------------------ -- The Agda standard library -- -- The non-commutative analogue of Nagata's construction of -- the "idealization of a module", (Local Rings, 1962; Wiley) -- defined here on R-R-*bi*modules M over a ring R, as used in -- "Forward- or reverse-mode automatic differentiation: What's the difference?" -- (Van den Berg, Schrijvers, McKinna, Vandenbroucke; -- Science of Computer Programming, Vol. 234, January 2024 -- https://doi.org/10.1016/j.scico.2023.103010) -- -- The construction N =def R ⋉ M , for which there is unfortunately -- no consistent notation in the literature, consists of: -- * carrier: pairs |R| × |M| -- * with additive structure that of the direct sum R ⊕ M _of modules_ -- * but with multiplication _*_ such that M forms an _ideal_ of N -- * moreover satisfying 'm * m ≈ 0' for every m ∈ M ⊆ N -- -- The fundamental lemma (proved here) is that N, in fact, defines a Ring: -- this ring is essentially the 'ring of dual numbers' construction R[M] -- (Clifford, 1874; generalised!) for an ideal M, and thus the synthetic/algebraic -- analogue of the tangent space of M (considered as a 'vector space' over R) -- in differential geometry, hence its application to Automatic Differentiation. -- -- Nagata's more fundamental insight (not yet shown here) is that -- the lattice of R-submodules of M is in order-isomorphism with -- the lattice of _ideals_ of R ⋉ M , and hence that the study of -- modules can be reduced to that of ideals of a ring, and vice versa. -- ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (AbelianGroup; Ring) open import Algebra.Module.Bundles using (Bimodule) module Algebra.Module.Construct.Idealization {r ℓr m ℓm} (ring : Ring r ℓr) (bimodule : Bimodule ring ring m ℓm) where open import Algebra.Core using (Op₂) import Algebra.Consequences.Setoid as Consequences using (comm∧assoc⇒middleFour) import Algebra.Definitions as Definitions using (Congruent₂; _DistributesOverˡ_; _DistributesOverʳ_; _DistributesOver_ ; LeftIdentity; RightIdentity; Identity; Associative) import Algebra.Module.Construct.DirectProduct as DirectProduct using (bimodule) import Algebra.Module.Construct.TensorUnit as TensorUnit using (bimodule) open import Algebra.Structures using (IsAbelianGroup; IsRing) open import Data.Product.Base using (_,_; ∃-syntax) open import Level using (Level; _⊔_) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Core using (Rel) open import Relation.Binary.Structures using (IsEquivalence) import Relation.Binary.Reasoning.Setoid as ≈-Reasoning ------------------------------------------------------------------------ -- Definitions private open module R = Ring ring using () renaming (Carrier to R) open module M = Bimodule bimodule renaming (Carrierᴹ to M) +ᴹ-middleFour = Consequences.comm∧assoc⇒middleFour ≈ᴹ-setoid +ᴹ-cong +ᴹ-comm +ᴹ-assoc open module N = Bimodule (DirectProduct.bimodule TensorUnit.bimodule bimodule) using () renaming ( Carrierᴹ to N ; _≈ᴹ_ to _≈_ ; _+ᴹ_ to _+_ ; 0ᴹ to 0# ; -ᴹ_ to -_ ; +ᴹ-isAbelianGroup to +-isAbelianGroup ) open AbelianGroup M.+ᴹ-abelianGroup hiding (_≈_) open ≈-Reasoning ≈ᴹ-setoid open Definitions _≈_ -- Injections ι from the components of the direct sum -- ιᴹ in fact exhibits M as an _ideal_ of R ⋉ M (see below) ιᴿ : R → N ιᴿ r = r , 0ᴹ ιᴹ : M → N ιᴹ m = R.0# , m -- Multiplicative unit 1# : N 1# = ιᴿ R.1# -- Multiplication infixl 7 _*_ _*_ : Op₂ N (r₁ , m₁) * (r₂ , m₂) = r₁ R.* r₂ , r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂ -- Properties: because we work in the direct sum, every proof has -- * an 'R'-component, which inherits directly from R, and -- * an 'M'-component, where the work happens *-cong : Congruent₂ _*_ *-cong (r₁ , m₁) (r₂ , m₂) = R.*-cong r₁ r₂ , +ᴹ-cong (*ₗ-cong r₁ m₂) (*ᵣ-cong m₁ r₂) *-identityˡ : LeftIdentity 1# _*_ *-identityˡ (r , m) = R.*-identityˡ r , (begin R.1# *ₗ m +ᴹ 0ᴹ *ᵣ r ≈⟨ +ᴹ-cong (*ₗ-identityˡ m) (*ᵣ-zeroˡ r) ⟩ m +ᴹ 0ᴹ ≈⟨ +ᴹ-identityʳ m ⟩ m ∎) *-identityʳ : RightIdentity 1# _*_ *-identityʳ (r , m) = R.*-identityʳ r , (begin r *ₗ 0ᴹ +ᴹ m *ᵣ R.1# ≈⟨ +ᴹ-cong (*ₗ-zeroʳ r) (*ᵣ-identityʳ m) ⟩ 0ᴹ +ᴹ m ≈⟨ +ᴹ-identityˡ m ⟩ m ∎) *-identity : Identity 1# _*_ *-identity = *-identityˡ , *-identityʳ *-assoc : Associative _*_ *-assoc (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.*-assoc r₁ r₂ r₃ , (begin (r₁ R.* r₂) *ₗ m₃ +ᴹ (r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) *ᵣ r₃ ≈⟨ +ᴹ-cong (*ₗ-assoc r₁ r₂ m₃) (*ᵣ-distribʳ r₃ (r₁ *ₗ m₂) (m₁ *ᵣ r₂)) ⟩ r₁ *ₗ (r₂ *ₗ m₃) +ᴹ ((r₁ *ₗ m₂) *ᵣ r₃ +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃) ≈⟨ +ᴹ-congˡ (+ᴹ-congʳ (*ₗ-*ᵣ-assoc r₁ m₂ r₃)) ⟩ r₁ *ₗ (r₂ *ₗ m₃) +ᴹ (r₁ *ₗ (m₂ *ᵣ r₃) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃) ≈⟨ +ᴹ-assoc (r₁ *ₗ (r₂ *ₗ m₃)) (r₁ *ₗ (m₂ *ᵣ r₃)) ((m₁ *ᵣ r₂) *ᵣ r₃) ⟨ (r₁ *ₗ (r₂ *ₗ m₃) +ᴹ r₁ *ₗ (m₂ *ᵣ r₃)) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃ ≈⟨ +ᴹ-cong (≈ᴹ-sym (*ₗ-distribˡ r₁ (r₂ *ₗ m₃) (m₂ *ᵣ r₃))) (*ᵣ-assoc m₁ r₂ r₃) ⟩ r₁ *ₗ (r₂ *ₗ m₃ +ᴹ m₂ *ᵣ r₃) +ᴹ m₁ *ᵣ (r₂ R.* r₃) ∎) distribˡ : _*_ DistributesOverˡ _+_ distribˡ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribˡ r₁ r₂ r₃ , (begin r₁ *ₗ (m₂ +ᴹ m₃) +ᴹ m₁ *ᵣ (r₂ R.+ r₃) ≈⟨ +ᴹ-cong (*ₗ-distribˡ r₁ m₂ m₃) (*ᵣ-distribˡ m₁ r₂ r₃) ⟩ (r₁ *ₗ m₂ +ᴹ r₁ *ₗ m₃) +ᴹ (m₁ *ᵣ r₂ +ᴹ m₁ *ᵣ r₃) ≈⟨ +ᴹ-middleFour (r₁ *ₗ m₂) (r₁ *ₗ m₃) (m₁ *ᵣ r₂) (m₁ *ᵣ r₃) ⟩ (r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) +ᴹ (r₁ *ₗ m₃ +ᴹ m₁ *ᵣ r₃) ∎) distribʳ : _*_ DistributesOverʳ _+_ distribʳ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribʳ r₁ r₂ r₃ , (begin (r₂ R.+ r₃) *ₗ m₁ +ᴹ (m₂ +ᴹ m₃) *ᵣ r₁ ≈⟨ +ᴹ-cong (*ₗ-distribʳ m₁ r₂ r₃) (*ᵣ-distribʳ r₁ m₂ m₃) ⟩ (r₂ *ₗ m₁ +ᴹ r₃ *ₗ m₁) +ᴹ (m₂ *ᵣ r₁ +ᴹ m₃ *ᵣ r₁) ≈⟨ +ᴹ-middleFour (r₂ *ₗ m₁) (r₃ *ₗ m₁) (m₂ *ᵣ r₁) (m₃ *ᵣ r₁) ⟩ (r₂ *ₗ m₁ +ᴹ m₂ *ᵣ r₁) +ᴹ (r₃ *ₗ m₁ +ᴹ m₃ *ᵣ r₁) ∎) distrib : _*_ DistributesOver _+_ distrib = distribˡ , distribʳ ------------------------------------------------------------------------ -- The Fundamental Lemma -- Structure isRingᴺ : IsRing _≈_ _+_ _*_ -_ 0# 1# isRingᴺ = record { +-isAbelianGroup = +-isAbelianGroup ; *-cong = *-cong ; *-assoc = *-assoc ; *-identity = *-identity ; distrib = distrib } -- Bundle ringᴺ : Ring (r ⊔ m) (ℓr ⊔ ℓm) ringᴺ = record { isRing = isRingᴺ } ------------------------------------------------------------------------ -- M is an ideal of R ⋉ M satisfying m₁ * m₂ ≈ 0# ιᴹ-idealˡ : (n : N) (m : M) → ∃[ n*m ] n * ιᴹ m ≈ ιᴹ n*m ιᴹ-idealˡ n@(r , _) m = _ , R.zeroʳ r , ≈ᴹ-refl ιᴹ-idealʳ : (m : M) (n : N) → ∃[ m*n ] ιᴹ m * n ≈ ιᴹ m*n ιᴹ-idealʳ m n@(r , _) = _ , R.zeroˡ r , ≈ᴹ-refl *-annihilates-ιᴹ : (m₁ m₂ : M) → ιᴹ m₁ * ιᴹ m₂ ≈ 0# *-annihilates-ιᴹ m₁ m₂ = R.zeroˡ R.0# , (begin R.0# *ₗ m₂ +ᴹ m₁ *ᵣ R.0# ≈⟨ +ᴹ-cong (*ₗ-zeroˡ m₂) (*ᵣ-zeroʳ m₁) ⟩ 0ᴹ +ᴹ 0ᴹ ≈⟨ +ᴹ-identityˡ 0ᴹ ⟩ 0ᴹ ∎) m*m≈0 : (m : M) → ιᴹ m * ιᴹ m ≈ 0# m*m≈0 m = *-annihilates-ιᴹ m m ------------------------------------------------------------------------ -- Infix notation for when opening the module unparameterised infixl 4 _⋉_ _⋉_ = ringᴺ
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4