------------------------------------------------------------------------ -- The Agda standard library -- -- The identity morphism for algebraic lattice structures ------------------------------------------------------------------------ {-# OPTIONS --safe --cubical-compatible #-} module Algebra.Lattice.Morphism.Construct.Identity where open import Algebra.Lattice.Bundles using (RawLattice) open import Algebra.Lattice.Morphism.Structures using ( module LatticeMorphisms ) open import Data.Product.Base using (_,_) open import Function.Base using (id) import Function.Construct.Identity as Id open import Level using (Level) open import Relation.Binary.Morphism.Construct.Identity using (isRelHomomorphism) open import Relation.Binary.Definitions using (Reflexive) private variable c ℓ : Level module _ (L : RawLattice c ℓ) (open RawLattice L) (refl : Reflexive _≈_) where open LatticeMorphisms L L isLatticeHomomorphism : IsLatticeHomomorphism id isLatticeHomomorphism = record { isRelHomomorphism = isRelHomomorphism _ ; ∧-homo = λ _ _ → refl ; ∨-homo = λ _ _ → refl } isLatticeMonomorphism : IsLatticeMonomorphism id isLatticeMonomorphism = record { isLatticeHomomorphism = isLatticeHomomorphism ; injective = id } isLatticeIsomorphism : IsLatticeIsomorphism id isLatticeIsomorphism = record { isLatticeMonomorphism = isLatticeMonomorphism ; surjective = Id.surjective _ }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4