A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Algebra.Lattice.Construct.Zero.html below:

Algebra.Lattice.Construct.Zero

Algebra.Lattice.Construct.Zero
------------------------------------------------------------------------
-- The Agda standard library
--
-- Instances of algebraic lattice structures where the carrier is ⊤.
-- In mathematics, this is usually called 0.
--
-- From monoids up, these are are zero-objects – i.e, both the initial
-- and the terminal object in the relevant category.
-- For structures without an identity element, we can't necessarily
-- produce a homomorphism out of 0, because there is an instance of such
-- a structure with an empty Carrier.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Level using (Level)

module Algebra.Lattice.Construct.Zero {c  : Level} where

open import Algebra.Lattice.Bundles using (Semilattice)
open import Data.Unit.Polymorphic using ()

------------------------------------------------------------------------
-- Bundles

semilattice : Semilattice c 
semilattice = record { Carrier =  ; _≈_ = λ _ _   }

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4