------------------------------------------------------------------------ -- The Agda standard library -- -- Instances of algebraic structures where the carrier is β€. In -- mathematics, this is usually called 0 (1 in the case of Monoid, Group). -- -- From monoids up, these are zero-objects β i.e, both the initial -- and the terminal object in the relevant category. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Level using (Level) module Algebra.Construct.Terminal {c β : Level} where open import Algebra.Bundles open import Data.Unit.Polymorphic using (β€) open import Relation.Binary.Core using (Rel) ------------------------------------------------------------------------ -- Gather all the functionality in one place module πne where infix 4 _β_ Carrier : Set c Carrier = β€ _β_ : Rel Carrier β _ β _ = β€ ------------------------------------------------------------------------ -- Raw bundles rawMagma : RawMagma c β rawMagma = record { πne } rawMonoid : RawMonoid c β rawMonoid = record { πne } rawGroup : RawGroup c β rawGroup = record { πne } rawNearSemiring : RawNearSemiring c β rawNearSemiring = record { πne } rawSemiring : RawSemiring c β rawSemiring = record { πne } rawRing : RawRing c β rawRing = record { πne } ------------------------------------------------------------------------ -- Bundles magma : Magma c β magma = record { πne } semigroup : Semigroup c β semigroup = record { πne } band : Band c β band = record { πne } commutativeSemigroup : CommutativeSemigroup c β commutativeSemigroup = record { πne } monoid : Monoid c β monoid = record { πne } commutativeMonoid : CommutativeMonoid c β commutativeMonoid = record { πne } idempotentCommutativeMonoid : IdempotentCommutativeMonoid c β idempotentCommutativeMonoid = record { πne } group : Group c β group = record { πne } abelianGroup : AbelianGroup c β abelianGroup = record { πne } nearSemiring : NearSemiring c β nearSemiring = record { πne } semiring : Semiring c β semiring = record { πne } ring : Ring c β ring = record { πne }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4