Function to test the above algorithm.
96 {
97
98 const int n1 = 3;
99 std::array<int, n1> weight1 = {10, 20, 30};
100 std::array<int, n1> value1 = {60, 100, 120};
101 const int capacity1 = 50;
103 capacity1, weight1, value1);
104 const int expected_max_value1 = 220;
105 assert(max_value1 == expected_max_value1);
106 std::cout << "Maximum Knapsack value with " << n1 << " items is "
107 << max_value1 << std::endl;
108
109
110 const int n2 = 4;
111 std::array<int, n2> weight2 = {24, 10, 10, 7};
112 std::array<int, n2> value2 = {24, 18, 18, 10};
113 const int capacity2 = 25;
115 capacity2, weight2, value2);
116 const int expected_max_value2 = 36;
117 assert(max_value2 == expected_max_value2);
118 std::cout << "Maximum Knapsack value with " << n2 << " items is "
119 << max_value2 << std::endl;
120}
int maxKnapsackValue(const int capacity, const std::array< int, n > &weight, const std::array< int, n > &value)
Picking up all those items whose combined weight is below the given capacity and calculating the valu...
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4