Loading...
Searching...
No Matches
Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm More...
#include <iostream>
Go to the source code of this file.
int gcd (int num1, int num2) int main ()Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm
Definition in file gcd_recursive_euclidean.cpp.
◆ gcd() int gcd ( int num1, int num2 )algorithm
Definition at line 14 of file gcd_recursive_euclidean.cpp.
14 {
15 if (num1 <= 0 | num2 <= 0) {
16 throw std::domain_error("Euclidean algorithm domain is for ints > 0");
17 }
18
19 if (num1 == num2) {
20 return num1;
21 }
22
23
24 if (num1 == 0)
25 return num2;
26 if (num2 == 0)
27 return num1;
28
29
30 if (num1 == num2)
31 return num1;
32
33
34 if (num1 > num2)
35 return gcd(num1 - num2, num2);
36 return gcd(num1, num2 - num1);
37}
int gcd(int num1, int num2)
◆ main()Main function
Definition at line 42 of file gcd_recursive_euclidean.cpp.
42 {
43std::cout <<
"gcd of 120,7 is "<< (
gcd(120, 7)) << std::endl;
44 try {
45std::cout <<
"gcd of -120,10 is "<<
gcd(-120, 10) << std::endl;
46 } catch (const std::domain_error &e) {
47 std::cout << "Error handling was successful" << std::endl;
48 }
49std::cout <<
"gcd of 312,221 is "<< (
gcd(312, 221)) << std::endl;
50std::cout <<
"gcd of 289,204 is "<< (
gcd(289, 204)) << std::endl;
51 return 0;
52}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4