This is a work in progress! For the latest updates from the HTML WG, possibly including important bug fixes, please look at the editor's draft instead. There may also be a more up-to-date Working Draft with changes based on resolution of Last Call issues.
HTML5 8.5 Named character referencesThis table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by the previous sections.
Name Character(s) GlyphAElig;
U+000C6 Æ AMP;
U+00026 & Aacute;
U+000C1 Á Abreve;
U+00102 Ă Acirc;
U+000C2 Â Acy;
U+00410 А Afr;
U+1D504 𝔄 Agrave;
U+000C0 À Alpha;
U+00391 Α Amacr;
U+00100 Ā And;
U+02A53 ⩓ Aogon;
U+00104 Ą Aopf;
U+1D538 𝔸 ApplyFunction;
U+02061 Aring;
U+000C5 Å Ascr;
U+1D49C 𝒜 Assign;
U+02254 ≔ Atilde;
U+000C3 Ã Auml;
U+000C4 Ä Backslash;
U+02216 ∖ Barv;
U+02AE7 ⫧ Barwed;
U+02306 ⌆ Bcy;
U+00411 Б Because;
U+02235 ∵ Bernoullis;
U+0212C ℬ Beta;
U+00392 Β Bfr;
U+1D505 𝔅 Bopf;
U+1D539 𝔹 Breve;
U+002D8 ˘ Bscr;
U+0212C ℬ Bumpeq;
U+0224E ≎ CHcy;
U+00427 Ч COPY;
U+000A9 © Cacute;
U+00106 Ć Cap;
U+022D2 ⋒ CapitalDifferentialD;
U+02145 ⅅ Cayleys;
U+0212D ℭ Ccaron;
U+0010C Č Ccedil;
U+000C7 Ç Ccirc;
U+00108 Ĉ Cconint;
U+02230 ∰ Cdot;
U+0010A Ċ Cedilla;
U+000B8 ¸ CenterDot;
U+000B7 · Cfr;
U+0212D ℭ Chi;
U+003A7 Χ CircleDot;
U+02299 ⊙ CircleMinus;
U+02296 ⊖ CirclePlus;
U+02295 ⊕ CircleTimes;
U+02297 ⊗ ClockwiseContourIntegral;
U+02232 ∲ CloseCurlyDoubleQuote;
U+0201D ” CloseCurlyQuote;
U+02019 ’ Colon;
U+02237 ∷ Colone;
U+02A74 ⩴ Congruent;
U+02261 ≡ Conint;
U+0222F ∯ ContourIntegral;
U+0222E ∮ Copf;
U+02102 ℂ Coproduct;
U+02210 ∐ CounterClockwiseContourIntegral;
U+02233 ∳ Cross;
U+02A2F ⨯ Cscr;
U+1D49E 𝒞 Cup;
U+022D3 ⋓ CupCap;
U+0224D ≍ DD;
U+02145 ⅅ DDotrahd;
U+02911 ⤑ DJcy;
U+00402 Ђ DScy;
U+00405 Ѕ DZcy;
U+0040F Џ Dagger;
U+02021 ‡ Darr;
U+021A1 ↡ Dashv;
U+02AE4 ⫤ Dcaron;
U+0010E Ď Dcy;
U+00414 Д Del;
U+02207 ∇ Delta;
U+00394 Δ Dfr;
U+1D507 𝔇 DiacriticalAcute;
U+000B4 ´ DiacriticalDot;
U+002D9 ˙ DiacriticalDoubleAcute;
U+002DD ˝ DiacriticalGrave;
U+00060 ` DiacriticalTilde;
U+002DC ˜ Diamond;
U+022C4 ⋄ DifferentialD;
U+02146 ⅆ Dopf;
U+1D53B 𝔻 Dot;
U+000A8 ¨ DotDot;
U+020DC ◌⃜ DotEqual;
U+02250 ≐ DoubleContourIntegral;
U+0222F ∯ DoubleDot;
U+000A8 ¨ DoubleDownArrow;
U+021D3 ⇓ DoubleLeftArrow;
U+021D0 ⇐ DoubleLeftRightArrow;
U+021D4 ⇔ DoubleLeftTee;
U+02AE4 ⫤ DoubleLongLeftArrow;
U+027F8 ⟸ DoubleLongLeftRightArrow;
U+027FA ⟺ DoubleLongRightArrow;
U+027F9 ⟹ DoubleRightArrow;
U+021D2 ⇒ DoubleRightTee;
U+022A8 ⊨ DoubleUpArrow;
U+021D1 ⇑ DoubleUpDownArrow;
U+021D5 ⇕ DoubleVerticalBar;
U+02225 ∥ DownArrow;
U+02193 ↓ DownArrowBar;
U+02913 ⤓ DownArrowUpArrow;
U+021F5 ⇵ DownBreve;
U+00311 ◌̑ DownLeftRightVector;
U+02950 ⥐ DownLeftTeeVector;
U+0295E ⥞ DownLeftVector;
U+021BD ↽ DownLeftVectorBar;
U+02956 ⥖ DownRightTeeVector;
U+0295F ⥟ DownRightVector;
U+021C1 ⇁ DownRightVectorBar;
U+02957 ⥗ DownTee;
U+022A4 ⊤ DownTeeArrow;
U+021A7 ↧ Downarrow;
U+021D3 ⇓ Dscr;
U+1D49F 𝒟 Dstrok;
U+00110 Đ ENG;
U+0014A Ŋ ETH;
U+000D0 Ð Eacute;
U+000C9 É Ecaron;
U+0011A Ě Ecirc;
U+000CA Ê Ecy;
U+0042D Э Edot;
U+00116 Ė Efr;
U+1D508 𝔈 Egrave;
U+000C8 È Element;
U+02208 ∈ Emacr;
U+00112 Ē EmptySmallSquare;
U+025FB ◻ EmptyVerySmallSquare;
U+025AB ▫ Eogon;
U+00118 Ę Eopf;
U+1D53C 𝔼 Epsilon;
U+00395 Ε Equal;
U+02A75 ⩵ EqualTilde;
U+02242 ≂ Equilibrium;
U+021CC ⇌ Escr;
U+02130 ℰ Esim;
U+02A73 ⩳ Eta;
U+00397 Η Euml;
U+000CB Ë Exists;
U+02203 ∃ ExponentialE;
U+02147 ⅇ Fcy;
U+00424 Ф Ffr;
U+1D509 𝔉 FilledSmallSquare;
U+025FC ◼ FilledVerySmallSquare;
U+025AA ▪ Fopf;
U+1D53D 𝔽 ForAll;
U+02200 ∀ Fouriertrf;
U+02131 ℱ Fscr;
U+02131 ℱ GJcy;
U+00403 Ѓ GT;
U+0003E > Gamma;
U+00393 Γ Gammad;
U+003DC Ϝ Gbreve;
U+0011E Ğ Gcedil;
U+00122 Ģ Gcirc;
U+0011C Ĝ Gcy;
U+00413 Г Gdot;
U+00120 Ġ Gfr;
U+1D50A 𝔊 Gg;
U+022D9 ⋙ Gopf;
U+1D53E 𝔾 GreaterEqual;
U+02265 ≥ GreaterEqualLess;
U+022DB ⋛ GreaterFullEqual;
U+02267 ≧ GreaterGreater;
U+02AA2 ⪢ GreaterLess;
U+02277 ≷ GreaterSlantEqual;
U+02A7E ⩾ GreaterTilde;
U+02273 ≳ Gscr;
U+1D4A2 𝒢 Gt;
U+0226B ≫ HARDcy;
U+0042A Ъ Hacek;
U+002C7 ˇ Hat;
U+0005E ^ Hcirc;
U+00124 Ĥ Hfr;
U+0210C ℌ HilbertSpace;
U+0210B ℋ Hopf;
U+0210D ℍ HorizontalLine;
U+02500 ─ Hscr;
U+0210B ℋ Hstrok;
U+00126 Ħ HumpDownHump;
U+0224E ≎ HumpEqual;
U+0224F ≏ IEcy;
U+00415 Е IJlig;
U+00132 IJ IOcy;
U+00401 Ё Iacute;
U+000CD Í Icirc;
U+000CE Î Icy;
U+00418 И Idot;
U+00130 İ Ifr;
U+02111 ℑ Igrave;
U+000CC Ì Im;
U+02111 ℑ Imacr;
U+0012A Ī ImaginaryI;
U+02148 ⅈ Implies;
U+021D2 ⇒ Int;
U+0222C ∬ Integral;
U+0222B ∫ Intersection;
U+022C2 ⋂ InvisibleComma;
U+02063 InvisibleTimes;
U+02062 Iogon;
U+0012E Į Iopf;
U+1D540 𝕀 Iota;
U+00399 Ι Iscr;
U+02110 ℐ Itilde;
U+00128 Ĩ Iukcy;
U+00406 І Iuml;
U+000CF Ï Jcirc;
U+00134 Ĵ Jcy;
U+00419 Й Jfr;
U+1D50D 𝔍 Jopf;
U+1D541 𝕁 Jscr;
U+1D4A5 𝒥 Jsercy;
U+00408 Ј Jukcy;
U+00404 Є KHcy;
U+00425 Х KJcy;
U+0040C Ќ Kappa;
U+0039A Κ Kcedil;
U+00136 Ķ Kcy;
U+0041A К Kfr;
U+1D50E 𝔎 Kopf;
U+1D542 𝕂 Kscr;
U+1D4A6 𝒦 LJcy;
U+00409 Љ LT;
U+0003C < Lacute;
U+00139 Ĺ Lambda;
U+0039B Λ Lang;
U+027EA ⟪ Laplacetrf;
U+02112 ℒ Larr;
U+0219E ↞ Lcaron;
U+0013D Ľ Lcedil;
U+0013B Ļ Lcy;
U+0041B Л LeftAngleBracket;
U+027E8 〈 LeftArrow;
U+02190 ← LeftArrowBar;
U+021E4 ⇤ LeftArrowRightArrow;
U+021C6 ⇆ LeftCeiling;
U+02308 ⌈ LeftDoubleBracket;
U+027E6 ⟦ LeftDownTeeVector;
U+02961 ⥡ LeftDownVector;
U+021C3 ⇃ LeftDownVectorBar;
U+02959 ⥙ LeftFloor;
U+0230A ⌊ LeftRightArrow;
U+02194 ↔ LeftRightVector;
U+0294E ⥎ LeftTee;
U+022A3 ⊣ LeftTeeArrow;
U+021A4 ↤ LeftTeeVector;
U+0295A ⥚ LeftTriangle;
U+022B2 ⊲ LeftTriangleBar;
U+029CF ⧏ LeftTriangleEqual;
U+022B4 ⊴ LeftUpDownVector;
U+02951 ⥑ LeftUpTeeVector;
U+02960 ⥠ LeftUpVector;
U+021BF ↿ LeftUpVectorBar;
U+02958 ⥘ LeftVector;
U+021BC ↼ LeftVectorBar;
U+02952 ⥒ Leftarrow;
U+021D0 ⇐ Leftrightarrow;
U+021D4 ⇔ LessEqualGreater;
U+022DA ⋚ LessFullEqual;
U+02266 ≦ LessGreater;
U+02276 ≶ LessLess;
U+02AA1 ⪡ LessSlantEqual;
U+02A7D ⩽ LessTilde;
U+02272 ≲ Lfr;
U+1D50F 𝔏 Ll;
U+022D8 ⋘ Lleftarrow;
U+021DA ⇚ Lmidot;
U+0013F Ŀ LongLeftArrow;
U+027F5 ⟵ LongLeftRightArrow;
U+027F7 ⟷ LongRightArrow;
U+027F6 ⟶ Longleftarrow;
U+027F8 ⟸ Longleftrightarrow;
U+027FA ⟺ Longrightarrow;
U+027F9 ⟹ Lopf;
U+1D543 𝕃 LowerLeftArrow;
U+02199 ↙ LowerRightArrow;
U+02198 ↘ Lscr;
U+02112 ℒ Lsh;
U+021B0 ↰ Lstrok;
U+00141 Ł Lt;
U+0226A ≪ Map;
U+02905 ⤅ Mcy;
U+0041C М MediumSpace;
U+0205F Mellintrf;
U+02133 ℳ Mfr;
U+1D510 𝔐 MinusPlus;
U+02213 ∓ Mopf;
U+1D544 𝕄 Mscr;
U+02133 ℳ Mu;
U+0039C Μ NJcy;
U+0040A Њ Nacute;
U+00143 Ń Ncaron;
U+00147 Ň Ncedil;
U+00145 Ņ Ncy;
U+0041D Н NegativeMediumSpace;
U+0200B NegativeThickSpace;
U+0200B NegativeThinSpace;
U+0200B NegativeVeryThinSpace;
U+0200B NestedGreaterGreater;
U+0226B ≫ NestedLessLess;
U+0226A ≪ NewLine;
U+0000A ␊ Nfr;
U+1D511 𝔑 NoBreak;
U+02060 NonBreakingSpace;
U+000A0 Nopf;
U+02115 ℕ Not;
U+02AEC ⫬ NotCongruent;
U+02262 ≢ NotCupCap;
U+0226D ≭ NotDoubleVerticalBar;
U+02226 ∦ NotElement;
U+02209 ∉ NotEqual;
U+02260 ≠ NotEqualTilde;
U+02242 U+00338 ≂̸ NotExists;
U+02204 ∄ NotGreater;
U+0226F ≯ NotGreaterEqual;
U+02271 ≱ NotGreaterFullEqual;
U+02267 U+00338 ≧̸ NotGreaterGreater;
U+0226B U+00338 ≫̸ NotGreaterLess;
U+02279 ≹ NotGreaterSlantEqual;
U+02A7E U+00338 ⩾̸ NotGreaterTilde;
U+02275 ≵ NotHumpDownHump;
U+0224E U+00338 ≎̸ NotHumpEqual;
U+0224F U+00338 ≏̸ NotLeftTriangle;
U+022EA ⋪ NotLeftTriangleBar;
U+029CF U+00338 ⧏̸ NotLeftTriangleEqual;
U+022EC ⋬ NotLess;
U+0226E ≮ NotLessEqual;
U+02270 ≰ NotLessGreater;
U+02278 ≸ NotLessLess;
U+0226A U+00338 ≪̸ NotLessSlantEqual;
U+02A7D U+00338 ⩽̸ NotLessTilde;
U+02274 ≴ NotNestedGreaterGreater;
U+02AA2 U+00338 ⪢̸ NotNestedLessLess;
U+02AA1 U+00338 ⪡̸ NotPrecedes;
U+02280 ⊀ NotPrecedesEqual;
U+02AAF U+00338 ⪯̸ NotPrecedesSlantEqual;
U+022E0 ⋠ NotReverseElement;
U+0220C ∌ NotRightTriangle;
U+022EB ⋫ NotRightTriangleBar;
U+029D0 U+00338 ⧐̸ NotRightTriangleEqual;
U+022ED ⋭ NotSquareSubset;
U+0228F U+00338 ⊏̸ NotSquareSubsetEqual;
U+022E2 ⋢ NotSquareSuperset;
U+02290 U+00338 ⊐̸ NotSquareSupersetEqual;
U+022E3 ⋣ NotSubset;
U+02282 U+020D2 ⊂⃒ NotSubsetEqual;
U+02288 ⊈ NotSucceeds;
U+02281 ⊁ NotSucceedsEqual;
U+02AB0 U+00338 ⪰̸ NotSucceedsSlantEqual;
U+022E1 ⋡ NotSucceedsTilde;
U+0227F U+00338 ≿̸ NotSuperset;
U+02283 U+020D2 ⊃⃒ NotSupersetEqual;
U+02289 ⊉ NotTilde;
U+02241 ≁ NotTildeEqual;
U+02244 ≄ NotTildeFullEqual;
U+02247 ≇ NotTildeTilde;
U+02249 ≉ NotVerticalBar;
U+02224 ∤ Nscr;
U+1D4A9 𝒩 Ntilde;
U+000D1 Ñ Nu;
U+0039D Ν OElig;
U+00152 Œ Oacute;
U+000D3 Ó Ocirc;
U+000D4 Ô Ocy;
U+0041E О Odblac;
U+00150 Ő Ofr;
U+1D512 𝔒 Ograve;
U+000D2 Ò Omacr;
U+0014C Ō Omega;
U+003A9 Ω Omicron;
U+0039F Ο Oopf;
U+1D546 𝕆 OpenCurlyDoubleQuote;
U+0201C “ OpenCurlyQuote;
U+02018 ‘ Or;
U+02A54 ⩔ Oscr;
U+1D4AA 𝒪 Oslash;
U+000D8 Ø Otilde;
U+000D5 Õ Otimes;
U+02A37 ⨷ Ouml;
U+000D6 Ö OverBar;
U+0203E ‾ OverBrace;
U+023DE ⏞ OverBracket;
U+023B4 ⎴ OverParenthesis;
U+023DC ⏜ PartialD;
U+02202 ∂ Pcy;
U+0041F П Pfr;
U+1D513 𝔓 Phi;
U+003A6 Φ Pi;
U+003A0 Π PlusMinus;
U+000B1 ± Poincareplane;
U+0210C ℌ Popf;
U+02119 ℙ Pr;
U+02ABB ⪻ Precedes;
U+0227A ≺ PrecedesEqual;
U+02AAF ⪯ PrecedesSlantEqual;
U+0227C ≼ PrecedesTilde;
U+0227E ≾ Prime;
U+02033 ″ Product;
U+0220F ∏ Proportion;
U+02237 ∷ Proportional;
U+0221D ∝ Pscr;
U+1D4AB 𝒫 Psi;
U+003A8 Ψ QUOT;
U+00022 " Qfr;
U+1D514 𝔔 Qopf;
U+0211A ℚ Qscr;
U+1D4AC 𝒬 RBarr;
U+02910 ⤐ REG;
U+000AE ® Racute;
U+00154 Ŕ Rang;
U+027EB ⟫ Rarr;
U+021A0 ↠ Rarrtl;
U+02916 ⤖ Rcaron;
U+00158 Ř Rcedil;
U+00156 Ŗ Rcy;
U+00420 Р Re;
U+0211C ℜ ReverseElement;
U+0220B ∋ ReverseEquilibrium;
U+021CB ⇋ ReverseUpEquilibrium;
U+0296F ⥯ Rfr;
U+0211C ℜ Rho;
U+003A1 Ρ RightAngleBracket;
U+027E9 〉 RightArrow;
U+02192 → RightArrowBar;
U+021E5 ⇥ RightArrowLeftArrow;
U+021C4 ⇄ RightCeiling;
U+02309 ⌉ RightDoubleBracket;
U+027E7 ⟧ RightDownTeeVector;
U+0295D ⥝ RightDownVector;
U+021C2 ⇂ RightDownVectorBar;
U+02955 ⥕ RightFloor;
U+0230B ⌋ RightTee;
U+022A2 ⊢ RightTeeArrow;
U+021A6 ↦ RightTeeVector;
U+0295B ⥛ RightTriangle;
U+022B3 ⊳ RightTriangleBar;
U+029D0 ⧐ RightTriangleEqual;
U+022B5 ⊵ RightUpDownVector;
U+0294F ⥏ RightUpTeeVector;
U+0295C ⥜ RightUpVector;
U+021BE ↾ RightUpVectorBar;
U+02954 ⥔ RightVector;
U+021C0 ⇀ RightVectorBar;
U+02953 ⥓ Rightarrow;
U+021D2 ⇒ Ropf;
U+0211D ℝ RoundImplies;
U+02970 ⥰ Rrightarrow;
U+021DB ⇛ Rscr;
U+0211B ℛ Rsh;
U+021B1 ↱ RuleDelayed;
U+029F4 ⧴ SHCHcy;
U+00429 Щ SHcy;
U+00428 Ш SOFTcy;
U+0042C Ь Sacute;
U+0015A Ś Sc;
U+02ABC ⪼ Scaron;
U+00160 Š Scedil;
U+0015E Ş Scirc;
U+0015C Ŝ Scy;
U+00421 С Sfr;
U+1D516 𝔖 ShortDownArrow;
U+02193 ↓ ShortLeftArrow;
U+02190 ← ShortRightArrow;
U+02192 → ShortUpArrow;
U+02191 ↑ Sigma;
U+003A3 Σ SmallCircle;
U+02218 ∘ Sopf;
U+1D54A 𝕊 Sqrt;
U+0221A √ Square;
U+025A1 □ SquareIntersection;
U+02293 ⊓ SquareSubset;
U+0228F ⊏ SquareSubsetEqual;
U+02291 ⊑ SquareSuperset;
U+02290 ⊐ SquareSupersetEqual;
U+02292 ⊒ SquareUnion;
U+02294 ⊔ Sscr;
U+1D4AE 𝒮 Star;
U+022C6 ⋆ Sub;
U+022D0 ⋐ Subset;
U+022D0 ⋐ SubsetEqual;
U+02286 ⊆ Succeeds;
U+0227B ≻ SucceedsEqual;
U+02AB0 ⪰ SucceedsSlantEqual;
U+0227D ≽ SucceedsTilde;
U+0227F ≿ SuchThat;
U+0220B ∋ Sum;
U+02211 ∑ Sup;
U+022D1 ⋑ Superset;
U+02283 ⊃ SupersetEqual;
U+02287 ⊇ Supset;
U+022D1 ⋑ THORN;
U+000DE Þ TRADE;
U+02122 ™ TSHcy;
U+0040B Ћ TScy;
U+00426 Ц Tab;
U+00009 ␉ Tau;
U+003A4 Τ Tcaron;
U+00164 Ť Tcedil;
U+00162 Ţ Tcy;
U+00422 Т Tfr;
U+1D517 𝔗 Therefore;
U+02234 ∴ Theta;
U+00398 Θ ThickSpace;
U+0205F U+0200A ThinSpace;
U+02009 Tilde;
U+0223C ∼ TildeEqual;
U+02243 ≃ TildeFullEqual;
U+02245 ≅ TildeTilde;
U+02248 ≈ Topf;
U+1D54B 𝕋 TripleDot;
U+020DB ◌⃛ Tscr;
U+1D4AF 𝒯 Tstrok;
U+00166 Ŧ Uacute;
U+000DA Ú Uarr;
U+0219F ↟ Uarrocir;
U+02949 ⥉ Ubrcy;
U+0040E Ў Ubreve;
U+0016C Ŭ Ucirc;
U+000DB Û Ucy;
U+00423 У Udblac;
U+00170 Ű Ufr;
U+1D518 𝔘 Ugrave;
U+000D9 Ù Umacr;
U+0016A Ū UnderBar;
U+0005F _ UnderBrace;
U+023DF ⏟ UnderBracket;
U+023B5 ⎵ UnderParenthesis;
U+023DD ⏝ Union;
U+022C3 ⋃ UnionPlus;
U+0228E ⊎ Uogon;
U+00172 Ų Uopf;
U+1D54C 𝕌 UpArrow;
U+02191 ↑ UpArrowBar;
U+02912 ⤒ UpArrowDownArrow;
U+021C5 ⇅ UpDownArrow;
U+02195 ↕ UpEquilibrium;
U+0296E ⥮ UpTee;
U+022A5 ⊥ UpTeeArrow;
U+021A5 ↥ Uparrow;
U+021D1 ⇑ Updownarrow;
U+021D5 ⇕ UpperLeftArrow;
U+02196 ↖ UpperRightArrow;
U+02197 ↗ Upsi;
U+003D2 ϒ Upsilon;
U+003A5 Υ Uring;
U+0016E Ů Uscr;
U+1D4B0 𝒰 Utilde;
U+00168 Ũ Uuml;
U+000DC Ü VDash;
U+022AB ⊫ Vbar;
U+02AEB ⫫ Vcy;
U+00412 В Vdash;
U+022A9 ⊩ Vdashl;
U+02AE6 ⫦ Vee;
U+022C1 ⋁ Verbar;
U+02016 ‖ Vert;
U+02016 ‖ VerticalBar;
U+02223 ∣ VerticalLine;
U+0007C | VerticalSeparator;
U+02758 ❘ VerticalTilde;
U+02240 ≀ VeryThinSpace;
U+0200A Vfr;
U+1D519 𝔙 Vopf;
U+1D54D 𝕍 Vscr;
U+1D4B1 𝒱 Vvdash;
U+022AA ⊪ Wcirc;
U+00174 Ŵ Wedge;
U+022C0 ⋀ Wfr;
U+1D51A 𝔚 Wopf;
U+1D54E 𝕎 Wscr;
U+1D4B2 𝒲 Xfr;
U+1D51B 𝔛 Xi;
U+0039E Ξ Xopf;
U+1D54F 𝕏 Xscr;
U+1D4B3 𝒳 YAcy;
U+0042F Я YIcy;
U+00407 Ї YUcy;
U+0042E Ю Yacute;
U+000DD Ý Ycirc;
U+00176 Ŷ Ycy;
U+0042B Ы Yfr;
U+1D51C 𝔜 Yopf;
U+1D550 𝕐 Yscr;
U+1D4B4 𝒴 Yuml;
U+00178 Ÿ ZHcy;
U+00416 Ж Zacute;
U+00179 Ź Zcaron;
U+0017D Ž Zcy;
U+00417 З Zdot;
U+0017B Ż ZeroWidthSpace;
U+0200B Zeta;
U+00396 Ζ Zfr;
U+02128 ℨ Zopf;
U+02124 ℤ Zscr;
U+1D4B5 𝒵 aacute;
U+000E1 á abreve;
U+00103 ă ac;
U+0223E ∾ acE;
U+0223E U+00333 ∾̳ acd;
U+0223F ∿ acirc;
U+000E2 â acute;
U+000B4 ´ acy;
U+00430 а aelig;
U+000E6 æ af;
U+02061 afr;
U+1D51E 𝔞 agrave;
U+000E0 à alefsym;
U+02135 ℵ aleph;
U+02135 ℵ alpha;
U+003B1 α amacr;
U+00101 ā amalg;
U+02A3F ⨿ amp;
U+00026 & and;
U+02227 ∧ andand;
U+02A55 ⩕ andd;
U+02A5C ⩜ andslope;
U+02A58 ⩘ andv;
U+02A5A ⩚ ang;
U+02220 ∠ ange;
U+029A4 ⦤ angle;
U+02220 ∠ angmsd;
U+02221 ∡ angmsdaa;
U+029A8 ⦨ angmsdab;
U+029A9 ⦩ angmsdac;
U+029AA ⦪ angmsdad;
U+029AB ⦫ angmsdae;
U+029AC ⦬ angmsdaf;
U+029AD ⦭ angmsdag;
U+029AE ⦮ angmsdah;
U+029AF ⦯ angrt;
U+0221F ∟ angrtvb;
U+022BE ⊾ angrtvbd;
U+0299D ⦝ angsph;
U+02222 ∢ angst;
U+000C5 Å angzarr;
U+0237C ⍼ aogon;
U+00105 ą aopf;
U+1D552 𝕒 ap;
U+02248 ≈ apE;
U+02A70 ⩰ apacir;
U+02A6F ⩯ ape;
U+0224A ≊ apid;
U+0224B ≋ apos;
U+00027 ' approx;
U+02248 ≈ approxeq;
U+0224A ≊ aring;
U+000E5 å ascr;
U+1D4B6 𝒶 ast;
U+0002A * asymp;
U+02248 ≈ asympeq;
U+0224D ≍ atilde;
U+000E3 ã auml;
U+000E4 ä awconint;
U+02233 ∳ awint;
U+02A11 ⨑ bNot;
U+02AED ⫭ backcong;
U+0224C ≌ backepsilon;
U+003F6 ϶ backprime;
U+02035 ‵ backsim;
U+0223D ∽ backsimeq;
U+022CD ⋍ barvee;
U+022BD ⊽ barwed;
U+02305 ⌅ barwedge;
U+02305 ⌅ bbrk;
U+023B5 ⎵ bbrktbrk;
U+023B6 ⎶ bcong;
U+0224C ≌ bcy;
U+00431 б bdquo;
U+0201E „ becaus;
U+02235 ∵ because;
U+02235 ∵ bemptyv;
U+029B0 ⦰ bepsi;
U+003F6 ϶ bernou;
U+0212C ℬ beta;
U+003B2 β beth;
U+02136 ℶ between;
U+0226C ≬ bfr;
U+1D51F 𝔟 bigcap;
U+022C2 ⋂ bigcirc;
U+025EF ◯ bigcup;
U+022C3 ⋃ bigodot;
U+02A00 ⨀ bigoplus;
U+02A01 ⨁ bigotimes;
U+02A02 ⨂ bigsqcup;
U+02A06 ⨆ bigstar;
U+02605 ★ bigtriangledown;
U+025BD ▽ bigtriangleup;
U+025B3 △ biguplus;
U+02A04 ⨄ bigvee;
U+022C1 ⋁ bigwedge;
U+022C0 ⋀ bkarow;
U+0290D ⤍ blacklozenge;
U+029EB ⧫ blacksquare;
U+025AA ▪ blacktriangle;
U+025B4 ▴ blacktriangledown;
U+025BE ▾ blacktriangleleft;
U+025C2 ◂ blacktriangleright;
U+025B8 ▸ blank;
U+02423 ␣ blk12;
U+02592 ▒ blk14;
U+02591 ░ blk34;
U+02593 ▓ block;
U+02588 █ bne;
U+0003D U+020E5 =⃥ bnequiv;
U+02261 U+020E5 ≡⃥ bnot;
U+02310 ⌐ bopf;
U+1D553 𝕓 bot;
U+022A5 ⊥ bottom;
U+022A5 ⊥ bowtie;
U+022C8 ⋈ boxDL;
U+02557 ╗ boxDR;
U+02554 ╔ boxDl;
U+02556 ╖ boxDr;
U+02553 ╓ boxH;
U+02550 ═ boxHD;
U+02566 ╦ boxHU;
U+02569 ╩ boxHd;
U+02564 ╤ boxHu;
U+02567 ╧ boxUL;
U+0255D ╝ boxUR;
U+0255A ╚ boxUl;
U+0255C ╜ boxUr;
U+02559 ╙ boxV;
U+02551 ║ boxVH;
U+0256C ╬ boxVL;
U+02563 ╣ boxVR;
U+02560 ╠ boxVh;
U+0256B ╫ boxVl;
U+02562 ╢ boxVr;
U+0255F ╟ boxbox;
U+029C9 ⧉ boxdL;
U+02555 ╕ boxdR;
U+02552 ╒ boxdl;
U+02510 ┐ boxdr;
U+0250C ┌ boxh;
U+02500 ─ boxhD;
U+02565 ╥ boxhU;
U+02568 ╨ boxhd;
U+0252C ┬ boxhu;
U+02534 ┴ boxminus;
U+0229F ⊟ boxplus;
U+0229E ⊞ boxtimes;
U+022A0 ⊠ boxuL;
U+0255B ╛ boxuR;
U+02558 ╘ boxul;
U+02518 ┘ boxur;
U+02514 └ boxv;
U+02502 │ boxvH;
U+0256A ╪ boxvL;
U+02561 ╡ boxvR;
U+0255E ╞ boxvh;
U+0253C ┼ boxvl;
U+02524 ┤ boxvr;
U+0251C ├ bprime;
U+02035 ‵ breve;
U+002D8 ˘ brvbar;
U+000A6 ¦ bscr;
U+1D4B7 𝒷 bsemi;
U+0204F ⁏ bsim;
U+0223D ∽ bsime;
U+022CD ⋍ bsol;
U+0005C \ bsolb;
U+029C5 ⧅ bsolhsub;
U+027C8 ⟈ bull;
U+02022 • bullet;
U+02022 • bump;
U+0224E ≎ bumpE;
U+02AAE ⪮ bumpe;
U+0224F ≏ bumpeq;
U+0224F ≏ cacute;
U+00107 ć cap;
U+02229 ∩ capand;
U+02A44 ⩄ capbrcup;
U+02A49 ⩉ capcap;
U+02A4B ⩋ capcup;
U+02A47 ⩇ capdot;
U+02A40 ⩀ caps;
U+02229 U+0FE00 ∩︀ caret;
U+02041 ⁁ caron;
U+002C7 ˇ ccaps;
U+02A4D ⩍ ccaron;
U+0010D č ccedil;
U+000E7 ç ccirc;
U+00109 ĉ ccups;
U+02A4C ⩌ ccupssm;
U+02A50 ⩐ cdot;
U+0010B ċ cedil;
U+000B8 ¸ cemptyv;
U+029B2 ⦲ cent;
U+000A2 ¢ centerdot;
U+000B7 · cfr;
U+1D520 𝔠 chcy;
U+00447 ч check;
U+02713 ✓ checkmark;
U+02713 ✓ chi;
U+003C7 χ cir;
U+025CB ○ cirE;
U+029C3 ⧃ circ;
U+002C6 ˆ circeq;
U+02257 ≗ circlearrowleft;
U+021BA ↺ circlearrowright;
U+021BB ↻ circledR;
U+000AE ® circledS;
U+024C8 Ⓢ circledast;
U+0229B ⊛ circledcirc;
U+0229A ⊚ circleddash;
U+0229D ⊝ cire;
U+02257 ≗ cirfnint;
U+02A10 ⨐ cirmid;
U+02AEF ⫯ cirscir;
U+029C2 ⧂ clubs;
U+02663 ♣ clubsuit;
U+02663 ♣ colon;
U+0003A : colone;
U+02254 ≔ coloneq;
U+02254 ≔ comma;
U+0002C , commat;
U+00040 @ comp;
U+02201 ∁ compfn;
U+02218 ∘ complement;
U+02201 ∁ complexes;
U+02102 ℂ cong;
U+02245 ≅ congdot;
U+02A6D ⩭ conint;
U+0222E ∮ copf;
U+1D554 𝕔 coprod;
U+02210 ∐ copy;
U+000A9 © copysr;
U+02117 ℗ crarr;
U+021B5 ↵ cross;
U+02717 ✗ cscr;
U+1D4B8 𝒸 csub;
U+02ACF ⫏ csube;
U+02AD1 ⫑ csup;
U+02AD0 ⫐ csupe;
U+02AD2 ⫒ ctdot;
U+022EF ⋯ cudarrl;
U+02938 ⤸ cudarrr;
U+02935 ⤵ cuepr;
U+022DE ⋞ cuesc;
U+022DF ⋟ cularr;
U+021B6 ↶ cularrp;
U+0293D ⤽ cup;
U+0222A ∪ cupbrcap;
U+02A48 ⩈ cupcap;
U+02A46 ⩆ cupcup;
U+02A4A ⩊ cupdot;
U+0228D ⊍ cupor;
U+02A45 ⩅ cups;
U+0222A U+0FE00 ∪︀ curarr;
U+021B7 ↷ curarrm;
U+0293C ⤼ curlyeqprec;
U+022DE ⋞ curlyeqsucc;
U+022DF ⋟ curlyvee;
U+022CE ⋎ curlywedge;
U+022CF ⋏ curren;
U+000A4 ¤ curvearrowleft;
U+021B6 ↶ curvearrowright;
U+021B7 ↷ cuvee;
U+022CE ⋎ cuwed;
U+022CF ⋏ cwconint;
U+02232 ∲ cwint;
U+02231 ∱ cylcty;
U+0232D ⌭ dArr;
U+021D3 ⇓ dHar;
U+02965 ⥥ dagger;
U+02020 † daleth;
U+02138 ℸ darr;
U+02193 ↓ dash;
U+02010 ‐ dashv;
U+022A3 ⊣ dbkarow;
U+0290F ⤏ dblac;
U+002DD ˝ dcaron;
U+0010F ď dcy;
U+00434 д dd;
U+02146 ⅆ ddagger;
U+02021 ‡ ddarr;
U+021CA ⇊ ddotseq;
U+02A77 ⩷ deg;
U+000B0 ° delta;
U+003B4 δ demptyv;
U+029B1 ⦱ dfisht;
U+0297F ⥿ dfr;
U+1D521 𝔡 dharl;
U+021C3 ⇃ dharr;
U+021C2 ⇂ diam;
U+022C4 ⋄ diamond;
U+022C4 ⋄ diamondsuit;
U+02666 ♦ diams;
U+02666 ♦ die;
U+000A8 ¨ digamma;
U+003DD ϝ disin;
U+022F2 ⋲ div;
U+000F7 ÷ divide;
U+000F7 ÷ divideontimes;
U+022C7 ⋇ divonx;
U+022C7 ⋇ djcy;
U+00452 ђ dlcorn;
U+0231E ⌞ dlcrop;
U+0230D ⌍ dollar;
U+00024 $ dopf;
U+1D555 𝕕 dot;
U+002D9 ˙ doteq;
U+02250 ≐ doteqdot;
U+02251 ≑ dotminus;
U+02238 ∸ dotplus;
U+02214 ∔ dotsquare;
U+022A1 ⊡ doublebarwedge;
U+02306 ⌆ downarrow;
U+02193 ↓ downdownarrows;
U+021CA ⇊ downharpoonleft;
U+021C3 ⇃ downharpoonright;
U+021C2 ⇂ drbkarow;
U+02910 ⤐ drcorn;
U+0231F ⌟ drcrop;
U+0230C ⌌ dscr;
U+1D4B9 𝒹 dscy;
U+00455 ѕ dsol;
U+029F6 ⧶ dstrok;
U+00111 đ dtdot;
U+022F1 ⋱ dtri;
U+025BF ▿ dtrif;
U+025BE ▾ duarr;
U+021F5 ⇵ duhar;
U+0296F ⥯ dwangle;
U+029A6 ⦦ dzcy;
U+0045F џ dzigrarr;
U+027FF ⟿ eDDot;
U+02A77 ⩷ eDot;
U+02251 ≑ eacute;
U+000E9 é easter;
U+02A6E ⩮ ecaron;
U+0011B ě ecir;
U+02256 ≖ ecirc;
U+000EA ê ecolon;
U+02255 ≕ ecy;
U+0044D э edot;
U+00117 ė ee;
U+02147 ⅇ efDot;
U+02252 ≒ efr;
U+1D522 𝔢 eg;
U+02A9A ⪚ egrave;
U+000E8 è egs;
U+02A96 ⪖ egsdot;
U+02A98 ⪘ el;
U+02A99 ⪙ elinters;
U+023E7 ⏧ ell;
U+02113 ℓ els;
U+02A95 ⪕ elsdot;
U+02A97 ⪗ emacr;
U+00113 ē empty;
U+02205 ∅ emptyset;
U+02205 ∅ emptyv;
U+02205 ∅ emsp;
U+02003 emsp13;
U+02004 emsp14;
U+02005 eng;
U+0014B ŋ ensp;
U+02002 eogon;
U+00119 ę eopf;
U+1D556 𝕖 epar;
U+022D5 ⋕ eparsl;
U+029E3 ⧣ eplus;
U+02A71 ⩱ epsi;
U+003B5 ε epsilon;
U+003B5 ε epsiv;
U+003F5 ϵ eqcirc;
U+02256 ≖ eqcolon;
U+02255 ≕ eqsim;
U+02242 ≂ eqslantgtr;
U+02A96 ⪖ eqslantless;
U+02A95 ⪕ equals;
U+0003D = equest;
U+0225F ≟ equiv;
U+02261 ≡ equivDD;
U+02A78 ⩸ eqvparsl;
U+029E5 ⧥ erDot;
U+02253 ≓ erarr;
U+02971 ⥱ escr;
U+0212F ℯ esdot;
U+02250 ≐ esim;
U+02242 ≂ eta;
U+003B7 η eth;
U+000F0 ð euml;
U+000EB ë euro;
U+020AC € excl;
U+00021 ! exist;
U+02203 ∃ expectation;
U+02130 ℰ exponentiale;
U+02147 ⅇ fallingdotseq;
U+02252 ≒ fcy;
U+00444 ф female;
U+02640 ♀ ffilig;
U+0FB03 ffi fflig;
U+0FB00 ff ffllig;
U+0FB04 ffl ffr;
U+1D523 𝔣 filig;
U+0FB01 fi fjlig;
U+00066 U+0006A fj flat;
U+0266D ♭ fllig;
U+0FB02 fl fltns;
U+025B1 ▱ fnof;
U+00192 ƒ fopf;
U+1D557 𝕗 forall;
U+02200 ∀ fork;
U+022D4 ⋔ forkv;
U+02AD9 ⫙ fpartint;
U+02A0D ⨍ frac12;
U+000BD ½ frac13;
U+02153 ⅓ frac14;
U+000BC ¼ frac15;
U+02155 ⅕ frac16;
U+02159 ⅙ frac18;
U+0215B ⅛ frac23;
U+02154 ⅔ frac25;
U+02156 ⅖ frac34;
U+000BE ¾ frac35;
U+02157 ⅗ frac38;
U+0215C ⅜ frac45;
U+02158 ⅘ frac56;
U+0215A ⅚ frac58;
U+0215D ⅝ frac78;
U+0215E ⅞ frasl;
U+02044 ⁄ frown;
U+02322 ⌢ fscr;
U+1D4BB 𝒻 gE;
U+02267 ≧ gEl;
U+02A8C ⪌ gacute;
U+001F5 ǵ gamma;
U+003B3 γ gammad;
U+003DD ϝ gap;
U+02A86 ⪆ gbreve;
U+0011F ğ gcirc;
U+0011D ĝ gcy;
U+00433 г gdot;
U+00121 ġ ge;
U+02265 ≥ gel;
U+022DB ⋛ geq;
U+02265 ≥ geqq;
U+02267 ≧ geqslant;
U+02A7E ⩾ ges;
U+02A7E ⩾ gescc;
U+02AA9 ⪩ gesdot;
U+02A80 ⪀ gesdoto;
U+02A82 ⪂ gesdotol;
U+02A84 ⪄ gesl;
U+022DB U+0FE00 ⋛︀ gesles;
U+02A94 ⪔ gfr;
U+1D524 𝔤 gg;
U+0226B ≫ ggg;
U+022D9 ⋙ gimel;
U+02137 ℷ gjcy;
U+00453 ѓ gl;
U+02277 ≷ glE;
U+02A92 ⪒ gla;
U+02AA5 ⪥ glj;
U+02AA4 ⪤ gnE;
U+02269 ≩ gnap;
U+02A8A ⪊ gnapprox;
U+02A8A ⪊ gne;
U+02A88 ⪈ gneq;
U+02A88 ⪈ gneqq;
U+02269 ≩ gnsim;
U+022E7 ⋧ gopf;
U+1D558 𝕘 grave;
U+00060 ` gscr;
U+0210A ℊ gsim;
U+02273 ≳ gsime;
U+02A8E ⪎ gsiml;
U+02A90 ⪐ gt;
U+0003E > gtcc;
U+02AA7 ⪧ gtcir;
U+02A7A ⩺ gtdot;
U+022D7 ⋗ gtlPar;
U+02995 ⦕ gtquest;
U+02A7C ⩼ gtrapprox;
U+02A86 ⪆ gtrarr;
U+02978 ⥸ gtrdot;
U+022D7 ⋗ gtreqless;
U+022DB ⋛ gtreqqless;
U+02A8C ⪌ gtrless;
U+02277 ≷ gtrsim;
U+02273 ≳ gvertneqq;
U+02269 U+0FE00 ≩︀ gvnE;
U+02269 U+0FE00 ≩︀ hArr;
U+021D4 ⇔ hairsp;
U+0200A half;
U+000BD ½ hamilt;
U+0210B ℋ hardcy;
U+0044A ъ harr;
U+02194 ↔ harrcir;
U+02948 ⥈ harrw;
U+021AD ↭ hbar;
U+0210F ℏ hcirc;
U+00125 ĥ hearts;
U+02665 ♥ heartsuit;
U+02665 ♥ hellip;
U+02026 … hercon;
U+022B9 ⊹ hfr;
U+1D525 𝔥 hksearow;
U+02925 ⤥ hkswarow;
U+02926 ⤦ hoarr;
U+021FF ⇿ homtht;
U+0223B ∻ hookleftarrow;
U+021A9 ↩ hookrightarrow;
U+021AA ↪ hopf;
U+1D559 𝕙 horbar;
U+02015 ― hscr;
U+1D4BD 𝒽 hslash;
U+0210F ℏ hstrok;
U+00127 ħ hybull;
U+02043 ⁃ hyphen;
U+02010 ‐ iacute;
U+000ED í ic;
U+02063 icirc;
U+000EE î icy;
U+00438 и iecy;
U+00435 е iexcl;
U+000A1 ¡ iff;
U+021D4 ⇔ ifr;
U+1D526 𝔦 igrave;
U+000EC ì ii;
U+02148 ⅈ iiiint;
U+02A0C ⨌ iiint;
U+0222D ∭ iinfin;
U+029DC ⧜ iiota;
U+02129 ℩ ijlig;
U+00133 ij imacr;
U+0012B ī image;
U+02111 ℑ imagline;
U+02110 ℐ imagpart;
U+02111 ℑ imath;
U+00131 ı imof;
U+022B7 ⊷ imped;
U+001B5 Ƶ in;
U+02208 ∈ incare;
U+02105 ℅ infin;
U+0221E ∞ infintie;
U+029DD ⧝ inodot;
U+00131 ı int;
U+0222B ∫ intcal;
U+022BA ⊺ integers;
U+02124 ℤ intercal;
U+022BA ⊺ intlarhk;
U+02A17 ⨗ intprod;
U+02A3C ⨼ iocy;
U+00451 ё iogon;
U+0012F į iopf;
U+1D55A 𝕚 iota;
U+003B9 ι iprod;
U+02A3C ⨼ iquest;
U+000BF ¿ iscr;
U+1D4BE 𝒾 isin;
U+02208 ∈ isinE;
U+022F9 ⋹ isindot;
U+022F5 ⋵ isins;
U+022F4 ⋴ isinsv;
U+022F3 ⋳ isinv;
U+02208 ∈ it;
U+02062 itilde;
U+00129 ĩ iukcy;
U+00456 і iuml;
U+000EF ï jcirc;
U+00135 ĵ jcy;
U+00439 й jfr;
U+1D527 𝔧 jmath;
U+00237 ȷ jopf;
U+1D55B 𝕛 jscr;
U+1D4BF 𝒿 jsercy;
U+00458 ј jukcy;
U+00454 є kappa;
U+003BA κ kappav;
U+003F0 ϰ kcedil;
U+00137 ķ kcy;
U+0043A к kfr;
U+1D528 𝔨 kgreen;
U+00138 ĸ khcy;
U+00445 х kjcy;
U+0045C ќ kopf;
U+1D55C 𝕜 kscr;
U+1D4C0 𝓀 lAarr;
U+021DA ⇚ lArr;
U+021D0 ⇐ lAtail;
U+0291B ⤛ lBarr;
U+0290E ⤎ lE;
U+02266 ≦ lEg;
U+02A8B ⪋ lHar;
U+02962 ⥢ lacute;
U+0013A ĺ laemptyv;
U+029B4 ⦴ lagran;
U+02112 ℒ lambda;
U+003BB λ lang;
U+027E8 〈 langd;
U+02991 ⦑ langle;
U+027E8 〈 lap;
U+02A85 ⪅ laquo;
U+000AB « larr;
U+02190 ← larrb;
U+021E4 ⇤ larrbfs;
U+0291F ⤟ larrfs;
U+0291D ⤝ larrhk;
U+021A9 ↩ larrlp;
U+021AB ↫ larrpl;
U+02939 ⤹ larrsim;
U+02973 ⥳ larrtl;
U+021A2 ↢ lat;
U+02AAB ⪫ latail;
U+02919 ⤙ late;
U+02AAD ⪭ lates;
U+02AAD U+0FE00 ⪭︀ lbarr;
U+0290C ⤌ lbbrk;
U+02772 ❲ lbrace;
U+0007B { lbrack;
U+0005B [ lbrke;
U+0298B ⦋ lbrksld;
U+0298F ⦏ lbrkslu;
U+0298D ⦍ lcaron;
U+0013E ľ lcedil;
U+0013C ļ lceil;
U+02308 ⌈ lcub;
U+0007B { lcy;
U+0043B л ldca;
U+02936 ⤶ ldquo;
U+0201C “ ldquor;
U+0201E „ ldrdhar;
U+02967 ⥧ ldrushar;
U+0294B ⥋ ldsh;
U+021B2 ↲ le;
U+02264 ≤ leftarrow;
U+02190 ← leftarrowtail;
U+021A2 ↢ leftharpoondown;
U+021BD ↽ leftharpoonup;
U+021BC ↼ leftleftarrows;
U+021C7 ⇇ leftrightarrow;
U+02194 ↔ leftrightarrows;
U+021C6 ⇆ leftrightharpoons;
U+021CB ⇋ leftrightsquigarrow;
U+021AD ↭ leftthreetimes;
U+022CB ⋋ leg;
U+022DA ⋚ leq;
U+02264 ≤ leqq;
U+02266 ≦ leqslant;
U+02A7D ⩽ les;
U+02A7D ⩽ lescc;
U+02AA8 ⪨ lesdot;
U+02A7F ⩿ lesdoto;
U+02A81 ⪁ lesdotor;
U+02A83 ⪃ lesg;
U+022DA U+0FE00 ⋚︀ lesges;
U+02A93 ⪓ lessapprox;
U+02A85 ⪅ lessdot;
U+022D6 ⋖ lesseqgtr;
U+022DA ⋚ lesseqqgtr;
U+02A8B ⪋ lessgtr;
U+02276 ≶ lesssim;
U+02272 ≲ lfisht;
U+0297C ⥼ lfloor;
U+0230A ⌊ lfr;
U+1D529 𝔩 lg;
U+02276 ≶ lgE;
U+02A91 ⪑ lhard;
U+021BD ↽ lharu;
U+021BC ↼ lharul;
U+0296A ⥪ lhblk;
U+02584 ▄ ljcy;
U+00459 љ ll;
U+0226A ≪ llarr;
U+021C7 ⇇ llcorner;
U+0231E ⌞ llhard;
U+0296B ⥫ lltri;
U+025FA ◺ lmidot;
U+00140 ŀ lmoust;
U+023B0 ⎰ lmoustache;
U+023B0 ⎰ lnE;
U+02268 ≨ lnap;
U+02A89 ⪉ lnapprox;
U+02A89 ⪉ lne;
U+02A87 ⪇ lneq;
U+02A87 ⪇ lneqq;
U+02268 ≨ lnsim;
U+022E6 ⋦ loang;
U+027EC ⟬ loarr;
U+021FD ⇽ lobrk;
U+027E6 ⟦ longleftarrow;
U+027F5 ⟵ longleftrightarrow;
U+027F7 ⟷ longmapsto;
U+027FC ⟼ longrightarrow;
U+027F6 ⟶ looparrowleft;
U+021AB ↫ looparrowright;
U+021AC ↬ lopar;
U+02985 ⦅ lopf;
U+1D55D 𝕝 loplus;
U+02A2D ⨭ lotimes;
U+02A34 ⨴ lowast;
U+02217 ∗ lowbar;
U+0005F _ loz;
U+025CA ◊ lozenge;
U+025CA ◊ lozf;
U+029EB ⧫ lpar;
U+00028 ( lparlt;
U+02993 ⦓ lrarr;
U+021C6 ⇆ lrcorner;
U+0231F ⌟ lrhar;
U+021CB ⇋ lrhard;
U+0296D ⥭ lrm;
U+0200E lrtri;
U+022BF ⊿ lsaquo;
U+02039 ‹ lscr;
U+1D4C1 𝓁 lsh;
U+021B0 ↰ lsim;
U+02272 ≲ lsime;
U+02A8D ⪍ lsimg;
U+02A8F ⪏ lsqb;
U+0005B [ lsquo;
U+02018 ‘ lsquor;
U+0201A ‚ lstrok;
U+00142 ł lt;
U+0003C < ltcc;
U+02AA6 ⪦ ltcir;
U+02A79 ⩹ ltdot;
U+022D6 ⋖ lthree;
U+022CB ⋋ ltimes;
U+022C9 ⋉ ltlarr;
U+02976 ⥶ ltquest;
U+02A7B ⩻ ltrPar;
U+02996 ⦖ ltri;
U+025C3 ◃ ltrie;
U+022B4 ⊴ ltrif;
U+025C2 ◂ lurdshar;
U+0294A ⥊ luruhar;
U+02966 ⥦ lvertneqq;
U+02268 U+0FE00 ≨︀ lvnE;
U+02268 U+0FE00 ≨︀ mDDot;
U+0223A ∺ macr;
U+000AF ¯ male;
U+02642 ♂ malt;
U+02720 ✠ maltese;
U+02720 ✠ map;
U+021A6 ↦ mapsto;
U+021A6 ↦ mapstodown;
U+021A7 ↧ mapstoleft;
U+021A4 ↤ mapstoup;
U+021A5 ↥ marker;
U+025AE ▮ mcomma;
U+02A29 ⨩ mcy;
U+0043C м mdash;
U+02014 — measuredangle;
U+02221 ∡ mfr;
U+1D52A 𝔪 mho;
U+02127 ℧ micro;
U+000B5 µ mid;
U+02223 ∣ midast;
U+0002A * midcir;
U+02AF0 ⫰ middot;
U+000B7 · minus;
U+02212 − minusb;
U+0229F ⊟ minusd;
U+02238 ∸ minusdu;
U+02A2A ⨪ mlcp;
U+02ADB ⫛ mldr;
U+02026 … mnplus;
U+02213 ∓ models;
U+022A7 ⊧ mopf;
U+1D55E 𝕞 mp;
U+02213 ∓ mscr;
U+1D4C2 𝓂 mstpos;
U+0223E ∾ mu;
U+003BC μ multimap;
U+022B8 ⊸ mumap;
U+022B8 ⊸ nGg;
U+022D9 U+00338 ⋙̸ nGt;
U+0226B U+020D2 ≫⃒ nGtv;
U+0226B U+00338 ≫̸ nLeftarrow;
U+021CD ⇍ nLeftrightarrow;
U+021CE ⇎ nLl;
U+022D8 U+00338 ⋘̸ nLt;
U+0226A U+020D2 ≪⃒ nLtv;
U+0226A U+00338 ≪̸ nRightarrow;
U+021CF ⇏ nVDash;
U+022AF ⊯ nVdash;
U+022AE ⊮ nabla;
U+02207 ∇ nacute;
U+00144 ń nang;
U+02220 U+020D2 ∠⃒ nap;
U+02249 ≉ napE;
U+02A70 U+00338 ⩰̸ napid;
U+0224B U+00338 ≋̸ napos;
U+00149 ʼn napprox;
U+02249 ≉ natur;
U+0266E ♮ natural;
U+0266E ♮ naturals;
U+02115 ℕ nbsp;
U+000A0 nbump;
U+0224E U+00338 ≎̸ nbumpe;
U+0224F U+00338 ≏̸ ncap;
U+02A43 ⩃ ncaron;
U+00148 ň ncedil;
U+00146 ņ ncong;
U+02247 ≇ ncongdot;
U+02A6D U+00338 ⩭̸ ncup;
U+02A42 ⩂ ncy;
U+0043D н ndash;
U+02013 – ne;
U+02260 ≠ neArr;
U+021D7 ⇗ nearhk;
U+02924 ⤤ nearr;
U+02197 ↗ nearrow;
U+02197 ↗ nedot;
U+02250 U+00338 ≐̸ nequiv;
U+02262 ≢ nesear;
U+02928 ⤨ nesim;
U+02242 U+00338 ≂̸ nexist;
U+02204 ∄ nexists;
U+02204 ∄ nfr;
U+1D52B 𝔫 ngE;
U+02267 U+00338 ≧̸ nge;
U+02271 ≱ ngeq;
U+02271 ≱ ngeqq;
U+02267 U+00338 ≧̸ ngeqslant;
U+02A7E U+00338 ⩾̸ nges;
U+02A7E U+00338 ⩾̸ ngsim;
U+02275 ≵ ngt;
U+0226F ≯ ngtr;
U+0226F ≯ nhArr;
U+021CE ⇎ nharr;
U+021AE ↮ nhpar;
U+02AF2 ⫲ ni;
U+0220B ∋ nis;
U+022FC ⋼ nisd;
U+022FA ⋺ niv;
U+0220B ∋ njcy;
U+0045A њ nlArr;
U+021CD ⇍ nlE;
U+02266 U+00338 ≦̸ nlarr;
U+0219A ↚ nldr;
U+02025 ‥ nle;
U+02270 ≰ nleftarrow;
U+0219A ↚ nleftrightarrow;
U+021AE ↮ nleq;
U+02270 ≰ nleqq;
U+02266 U+00338 ≦̸ nleqslant;
U+02A7D U+00338 ⩽̸ nles;
U+02A7D U+00338 ⩽̸ nless;
U+0226E ≮ nlsim;
U+02274 ≴ nlt;
U+0226E ≮ nltri;
U+022EA ⋪ nltrie;
U+022EC ⋬ nmid;
U+02224 ∤ nopf;
U+1D55F 𝕟 not;
U+000AC ¬ notin;
U+02209 ∉ notinE;
U+022F9 U+00338 ⋹̸ notindot;
U+022F5 U+00338 ⋵̸ notinva;
U+02209 ∉ notinvb;
U+022F7 ⋷ notinvc;
U+022F6 ⋶ notni;
U+0220C ∌ notniva;
U+0220C ∌ notnivb;
U+022FE ⋾ notnivc;
U+022FD ⋽ npar;
U+02226 ∦ nparallel;
U+02226 ∦ nparsl;
U+02AFD U+020E5 ⫽⃥ npart;
U+02202 U+00338 ∂̸ npolint;
U+02A14 ⨔ npr;
U+02280 ⊀ nprcue;
U+022E0 ⋠ npre;
U+02AAF U+00338 ⪯̸ nprec;
U+02280 ⊀ npreceq;
U+02AAF U+00338 ⪯̸ nrArr;
U+021CF ⇏ nrarr;
U+0219B ↛ nrarrc;
U+02933 U+00338 ⤳̸ nrarrw;
U+0219D U+00338 ↝̸ nrightarrow;
U+0219B ↛ nrtri;
U+022EB ⋫ nrtrie;
U+022ED ⋭ nsc;
U+02281 ⊁ nsccue;
U+022E1 ⋡ nsce;
U+02AB0 U+00338 ⪰̸ nscr;
U+1D4C3 𝓃 nshortmid;
U+02224 ∤ nshortparallel;
U+02226 ∦ nsim;
U+02241 ≁ nsime;
U+02244 ≄ nsimeq;
U+02244 ≄ nsmid;
U+02224 ∤ nspar;
U+02226 ∦ nsqsube;
U+022E2 ⋢ nsqsupe;
U+022E3 ⋣ nsub;
U+02284 ⊄ nsubE;
U+02AC5 U+00338 ⫅̸ nsube;
U+02288 ⊈ nsubset;
U+02282 U+020D2 ⊂⃒ nsubseteq;
U+02288 ⊈ nsubseteqq;
U+02AC5 U+00338 ⫅̸ nsucc;
U+02281 ⊁ nsucceq;
U+02AB0 U+00338 ⪰̸ nsup;
U+02285 ⊅ nsupE;
U+02AC6 U+00338 ⫆̸ nsupe;
U+02289 ⊉ nsupset;
U+02283 U+020D2 ⊃⃒ nsupseteq;
U+02289 ⊉ nsupseteqq;
U+02AC6 U+00338 ⫆̸ ntgl;
U+02279 ≹ ntilde;
U+000F1 ñ ntlg;
U+02278 ≸ ntriangleleft;
U+022EA ⋪ ntrianglelefteq;
U+022EC ⋬ ntriangleright;
U+022EB ⋫ ntrianglerighteq;
U+022ED ⋭ nu;
U+003BD ν num;
U+00023 # numero;
U+02116 № numsp;
U+02007 nvDash;
U+022AD ⊭ nvHarr;
U+02904 ⤄ nvap;
U+0224D U+020D2 ≍⃒ nvdash;
U+022AC ⊬ nvge;
U+02265 U+020D2 ≥⃒ nvgt;
U+0003E U+020D2 >⃒ nvinfin;
U+029DE ⧞ nvlArr;
U+02902 ⤂ nvle;
U+02264 U+020D2 ≤⃒ nvlt;
U+0003C U+020D2 <⃒ nvltrie;
U+022B4 U+020D2 ⊴⃒ nvrArr;
U+02903 ⤃ nvrtrie;
U+022B5 U+020D2 ⊵⃒ nvsim;
U+0223C U+020D2 ∼⃒ nwArr;
U+021D6 ⇖ nwarhk;
U+02923 ⤣ nwarr;
U+02196 ↖ nwarrow;
U+02196 ↖ nwnear;
U+02927 ⤧ oS;
U+024C8 Ⓢ oacute;
U+000F3 ó oast;
U+0229B ⊛ ocir;
U+0229A ⊚ ocirc;
U+000F4 ô ocy;
U+0043E о odash;
U+0229D ⊝ odblac;
U+00151 ő odiv;
U+02A38 ⨸ odot;
U+02299 ⊙ odsold;
U+029BC ⦼ oelig;
U+00153 œ ofcir;
U+029BF ⦿ ofr;
U+1D52C 𝔬 ogon;
U+002DB ˛ ograve;
U+000F2 ò ogt;
U+029C1 ⧁ ohbar;
U+029B5 ⦵ ohm;
U+003A9 Ω oint;
U+0222E ∮ olarr;
U+021BA ↺ olcir;
U+029BE ⦾ olcross;
U+029BB ⦻ oline;
U+0203E ‾ olt;
U+029C0 ⧀ omacr;
U+0014D ō omega;
U+003C9 ω omicron;
U+003BF ο omid;
U+029B6 ⦶ ominus;
U+02296 ⊖ oopf;
U+1D560 𝕠 opar;
U+029B7 ⦷ operp;
U+029B9 ⦹ oplus;
U+02295 ⊕ or;
U+02228 ∨ orarr;
U+021BB ↻ ord;
U+02A5D ⩝ order;
U+02134 ℴ orderof;
U+02134 ℴ ordf;
U+000AA ª ordm;
U+000BA º origof;
U+022B6 ⊶ oror;
U+02A56 ⩖ orslope;
U+02A57 ⩗ orv;
U+02A5B ⩛ oscr;
U+02134 ℴ oslash;
U+000F8 ø osol;
U+02298 ⊘ otilde;
U+000F5 õ otimes;
U+02297 ⊗ otimesas;
U+02A36 ⨶ ouml;
U+000F6 ö ovbar;
U+0233D ⌽ par;
U+02225 ∥ para;
U+000B6 ¶ parallel;
U+02225 ∥ parsim;
U+02AF3 ⫳ parsl;
U+02AFD ⫽ part;
U+02202 ∂ pcy;
U+0043F п percnt;
U+00025 % period;
U+0002E . permil;
U+02030 ‰ perp;
U+022A5 ⊥ pertenk;
U+02031 ‱ pfr;
U+1D52D 𝔭 phi;
U+003C6 φ phiv;
U+003D5 ϕ phmmat;
U+02133 ℳ phone;
U+0260E ☎ pi;
U+003C0 π pitchfork;
U+022D4 ⋔ piv;
U+003D6 ϖ planck;
U+0210F ℏ planckh;
U+0210E ℎ plankv;
U+0210F ℏ plus;
U+0002B + plusacir;
U+02A23 ⨣ plusb;
U+0229E ⊞ pluscir;
U+02A22 ⨢ plusdo;
U+02214 ∔ plusdu;
U+02A25 ⨥ pluse;
U+02A72 ⩲ plusmn;
U+000B1 ± plussim;
U+02A26 ⨦ plustwo;
U+02A27 ⨧ pm;
U+000B1 ± pointint;
U+02A15 ⨕ popf;
U+1D561 𝕡 pound;
U+000A3 £ pr;
U+0227A ≺ prE;
U+02AB3 ⪳ prap;
U+02AB7 ⪷ prcue;
U+0227C ≼ pre;
U+02AAF ⪯ prec;
U+0227A ≺ precapprox;
U+02AB7 ⪷ preccurlyeq;
U+0227C ≼ preceq;
U+02AAF ⪯ precnapprox;
U+02AB9 ⪹ precneqq;
U+02AB5 ⪵ precnsim;
U+022E8 ⋨ precsim;
U+0227E ≾ prime;
U+02032 ′ primes;
U+02119 ℙ prnE;
U+02AB5 ⪵ prnap;
U+02AB9 ⪹ prnsim;
U+022E8 ⋨ prod;
U+0220F ∏ profalar;
U+0232E ⌮ profline;
U+02312 ⌒ profsurf;
U+02313 ⌓ prop;
U+0221D ∝ propto;
U+0221D ∝ prsim;
U+0227E ≾ prurel;
U+022B0 ⊰ pscr;
U+1D4C5 𝓅 psi;
U+003C8 ψ puncsp;
U+02008 qfr;
U+1D52E 𝔮 qint;
U+02A0C ⨌ qopf;
U+1D562 𝕢 qprime;
U+02057 ⁗ qscr;
U+1D4C6 𝓆 quaternions;
U+0210D ℍ quatint;
U+02A16 ⨖ quest;
U+0003F ? questeq;
U+0225F ≟ quot;
U+00022 " rAarr;
U+021DB ⇛ rArr;
U+021D2 ⇒ rAtail;
U+0291C ⤜ rBarr;
U+0290F ⤏ rHar;
U+02964 ⥤ race;
U+0223D U+00331 ∽̱ racute;
U+00155 ŕ radic;
U+0221A √ raemptyv;
U+029B3 ⦳ rang;
U+027E9 〉 rangd;
U+02992 ⦒ range;
U+029A5 ⦥ rangle;
U+027E9 〉 raquo;
U+000BB » rarr;
U+02192 → rarrap;
U+02975 ⥵ rarrb;
U+021E5 ⇥ rarrbfs;
U+02920 ⤠ rarrc;
U+02933 ⤳ rarrfs;
U+0291E ⤞ rarrhk;
U+021AA ↪ rarrlp;
U+021AC ↬ rarrpl;
U+02945 ⥅ rarrsim;
U+02974 ⥴ rarrtl;
U+021A3 ↣ rarrw;
U+0219D ↝ ratail;
U+0291A ⤚ ratio;
U+02236 ∶ rationals;
U+0211A ℚ rbarr;
U+0290D ⤍ rbbrk;
U+02773 ❳ rbrace;
U+0007D } rbrack;
U+0005D ] rbrke;
U+0298C ⦌ rbrksld;
U+0298E ⦎ rbrkslu;
U+02990 ⦐ rcaron;
U+00159 ř rcedil;
U+00157 ŗ rceil;
U+02309 ⌉ rcub;
U+0007D } rcy;
U+00440 р rdca;
U+02937 ⤷ rdldhar;
U+02969 ⥩ rdquo;
U+0201D ” rdquor;
U+0201D ” rdsh;
U+021B3 ↳ real;
U+0211C ℜ realine;
U+0211B ℛ realpart;
U+0211C ℜ reals;
U+0211D ℝ rect;
U+025AD ▭ reg;
U+000AE ® rfisht;
U+0297D ⥽ rfloor;
U+0230B ⌋ rfr;
U+1D52F 𝔯 rhard;
U+021C1 ⇁ rharu;
U+021C0 ⇀ rharul;
U+0296C ⥬ rho;
U+003C1 ρ rhov;
U+003F1 ϱ rightarrow;
U+02192 → rightarrowtail;
U+021A3 ↣ rightharpoondown;
U+021C1 ⇁ rightharpoonup;
U+021C0 ⇀ rightleftarrows;
U+021C4 ⇄ rightleftharpoons;
U+021CC ⇌ rightrightarrows;
U+021C9 ⇉ rightsquigarrow;
U+0219D ↝ rightthreetimes;
U+022CC ⋌ ring;
U+002DA ˚ risingdotseq;
U+02253 ≓ rlarr;
U+021C4 ⇄ rlhar;
U+021CC ⇌ rlm;
U+0200F rmoust;
U+023B1 ⎱ rmoustache;
U+023B1 ⎱ rnmid;
U+02AEE ⫮ roang;
U+027ED ⟭ roarr;
U+021FE ⇾ robrk;
U+027E7 ⟧ ropar;
U+02986 ⦆ ropf;
U+1D563 𝕣 roplus;
U+02A2E ⨮ rotimes;
U+02A35 ⨵ rpar;
U+00029 ) rpargt;
U+02994 ⦔ rppolint;
U+02A12 ⨒ rrarr;
U+021C9 ⇉ rsaquo;
U+0203A › rscr;
U+1D4C7 𝓇 rsh;
U+021B1 ↱ rsqb;
U+0005D ] rsquo;
U+02019 ’ rsquor;
U+02019 ’ rthree;
U+022CC ⋌ rtimes;
U+022CA ⋊ rtri;
U+025B9 ▹ rtrie;
U+022B5 ⊵ rtrif;
U+025B8 ▸ rtriltri;
U+029CE ⧎ ruluhar;
U+02968 ⥨ rx;
U+0211E ℞ sacute;
U+0015B ś sbquo;
U+0201A ‚ sc;
U+0227B ≻ scE;
U+02AB4 ⪴ scap;
U+02AB8 ⪸ scaron;
U+00161 š sccue;
U+0227D ≽ sce;
U+02AB0 ⪰ scedil;
U+0015F ş scirc;
U+0015D ŝ scnE;
U+02AB6 ⪶ scnap;
U+02ABA ⪺ scnsim;
U+022E9 ⋩ scpolint;
U+02A13 ⨓ scsim;
U+0227F ≿ scy;
U+00441 с sdot;
U+022C5 ⋅ sdotb;
U+022A1 ⊡ sdote;
U+02A66 ⩦ seArr;
U+021D8 ⇘ searhk;
U+02925 ⤥ searr;
U+02198 ↘ searrow;
U+02198 ↘ sect;
U+000A7 § semi;
U+0003B ; seswar;
U+02929 ⤩ setminus;
U+02216 ∖ setmn;
U+02216 ∖ sext;
U+02736 ✶ sfr;
U+1D530 𝔰 sfrown;
U+02322 ⌢ sharp;
U+0266F ♯ shchcy;
U+00449 щ shcy;
U+00448 ш shortmid;
U+02223 ∣ shortparallel;
U+02225 ∥ shy;
U+000AD sigma;
U+003C3 σ sigmaf;
U+003C2 ς sigmav;
U+003C2 ς sim;
U+0223C ∼ simdot;
U+02A6A ⩪ sime;
U+02243 ≃ simeq;
U+02243 ≃ simg;
U+02A9E ⪞ simgE;
U+02AA0 ⪠ siml;
U+02A9D ⪝ simlE;
U+02A9F ⪟ simne;
U+02246 ≆ simplus;
U+02A24 ⨤ simrarr;
U+02972 ⥲ slarr;
U+02190 ← smallsetminus;
U+02216 ∖ smashp;
U+02A33 ⨳ smeparsl;
U+029E4 ⧤ smid;
U+02223 ∣ smile;
U+02323 ⌣ smt;
U+02AAA ⪪ smte;
U+02AAC ⪬ smtes;
U+02AAC U+0FE00 ⪬︀ softcy;
U+0044C ь sol;
U+0002F / solb;
U+029C4 ⧄ solbar;
U+0233F ⌿ sopf;
U+1D564 𝕤 spades;
U+02660 ♠ spadesuit;
U+02660 ♠ spar;
U+02225 ∥ sqcap;
U+02293 ⊓ sqcaps;
U+02293 U+0FE00 ⊓︀ sqcup;
U+02294 ⊔ sqcups;
U+02294 U+0FE00 ⊔︀ sqsub;
U+0228F ⊏ sqsube;
U+02291 ⊑ sqsubset;
U+0228F ⊏ sqsubseteq;
U+02291 ⊑ sqsup;
U+02290 ⊐ sqsupe;
U+02292 ⊒ sqsupset;
U+02290 ⊐ sqsupseteq;
U+02292 ⊒ squ;
U+025A1 □ square;
U+025A1 □ squarf;
U+025AA ▪ squf;
U+025AA ▪ srarr;
U+02192 → sscr;
U+1D4C8 𝓈 ssetmn;
U+02216 ∖ ssmile;
U+02323 ⌣ sstarf;
U+022C6 ⋆ star;
U+02606 ☆ starf;
U+02605 ★ straightepsilon;
U+003F5 ϵ straightphi;
U+003D5 ϕ strns;
U+000AF ¯ sub;
U+02282 ⊂ subE;
U+02AC5 ⫅ subdot;
U+02ABD ⪽ sube;
U+02286 ⊆ subedot;
U+02AC3 ⫃ submult;
U+02AC1 ⫁ subnE;
U+02ACB ⫋ subne;
U+0228A ⊊ subplus;
U+02ABF ⪿ subrarr;
U+02979 ⥹ subset;
U+02282 ⊂ subseteq;
U+02286 ⊆ subseteqq;
U+02AC5 ⫅ subsetneq;
U+0228A ⊊ subsetneqq;
U+02ACB ⫋ subsim;
U+02AC7 ⫇ subsub;
U+02AD5 ⫕ subsup;
U+02AD3 ⫓ succ;
U+0227B ≻ succapprox;
U+02AB8 ⪸ succcurlyeq;
U+0227D ≽ succeq;
U+02AB0 ⪰ succnapprox;
U+02ABA ⪺ succneqq;
U+02AB6 ⪶ succnsim;
U+022E9 ⋩ succsim;
U+0227F ≿ sum;
U+02211 ∑ sung;
U+0266A ♪ sup;
U+02283 ⊃ sup1;
U+000B9 ¹ sup2;
U+000B2 ² sup3;
U+000B3 ³ supE;
U+02AC6 ⫆ supdot;
U+02ABE ⪾ supdsub;
U+02AD8 ⫘ supe;
U+02287 ⊇ supedot;
U+02AC4 ⫄ suphsol;
U+027C9 ⟉ suphsub;
U+02AD7 ⫗ suplarr;
U+0297B ⥻ supmult;
U+02AC2 ⫂ supnE;
U+02ACC ⫌ supne;
U+0228B ⊋ supplus;
U+02AC0 ⫀ supset;
U+02283 ⊃ supseteq;
U+02287 ⊇ supseteqq;
U+02AC6 ⫆ supsetneq;
U+0228B ⊋ supsetneqq;
U+02ACC ⫌ supsim;
U+02AC8 ⫈ supsub;
U+02AD4 ⫔ supsup;
U+02AD6 ⫖ swArr;
U+021D9 ⇙ swarhk;
U+02926 ⤦ swarr;
U+02199 ↙ swarrow;
U+02199 ↙ swnwar;
U+0292A ⤪ szlig;
U+000DF ß target;
U+02316 ⌖ tau;
U+003C4 τ tbrk;
U+023B4 ⎴ tcaron;
U+00165 ť tcedil;
U+00163 ţ tcy;
U+00442 т tdot;
U+020DB ◌⃛ telrec;
U+02315 ⌕ tfr;
U+1D531 𝔱 there4;
U+02234 ∴ therefore;
U+02234 ∴ theta;
U+003B8 θ thetasym;
U+003D1 ϑ thetav;
U+003D1 ϑ thickapprox;
U+02248 ≈ thicksim;
U+0223C ∼ thinsp;
U+02009 thkap;
U+02248 ≈ thksim;
U+0223C ∼ thorn;
U+000FE þ tilde;
U+002DC ˜ times;
U+000D7 × timesb;
U+022A0 ⊠ timesbar;
U+02A31 ⨱ timesd;
U+02A30 ⨰ tint;
U+0222D ∭ toea;
U+02928 ⤨ top;
U+022A4 ⊤ topbot;
U+02336 ⌶ topcir;
U+02AF1 ⫱ topf;
U+1D565 𝕥 topfork;
U+02ADA ⫚ tosa;
U+02929 ⤩ tprime;
U+02034 ‴ trade;
U+02122 ™ triangle;
U+025B5 ▵ triangledown;
U+025BF ▿ triangleleft;
U+025C3 ◃ trianglelefteq;
U+022B4 ⊴ triangleq;
U+0225C ≜ triangleright;
U+025B9 ▹ trianglerighteq;
U+022B5 ⊵ tridot;
U+025EC ◬ trie;
U+0225C ≜ triminus;
U+02A3A ⨺ triplus;
U+02A39 ⨹ trisb;
U+029CD ⧍ tritime;
U+02A3B ⨻ trpezium;
U+023E2 ⏢ tscr;
U+1D4C9 𝓉 tscy;
U+00446 ц tshcy;
U+0045B ћ tstrok;
U+00167 ŧ twixt;
U+0226C ≬ twoheadleftarrow;
U+0219E ↞ twoheadrightarrow;
U+021A0 ↠ uArr;
U+021D1 ⇑ uHar;
U+02963 ⥣ uacute;
U+000FA ú uarr;
U+02191 ↑ ubrcy;
U+0045E ў ubreve;
U+0016D ŭ ucirc;
U+000FB û ucy;
U+00443 у udarr;
U+021C5 ⇅ udblac;
U+00171 ű udhar;
U+0296E ⥮ ufisht;
U+0297E ⥾ ufr;
U+1D532 𝔲 ugrave;
U+000F9 ù uharl;
U+021BF ↿ uharr;
U+021BE ↾ uhblk;
U+02580 ▀ ulcorn;
U+0231C ⌜ ulcorner;
U+0231C ⌜ ulcrop;
U+0230F ⌏ ultri;
U+025F8 ◸ umacr;
U+0016B ū uml;
U+000A8 ¨ uogon;
U+00173 ų uopf;
U+1D566 𝕦 uparrow;
U+02191 ↑ updownarrow;
U+02195 ↕ upharpoonleft;
U+021BF ↿ upharpoonright;
U+021BE ↾ uplus;
U+0228E ⊎ upsi;
U+003C5 υ upsih;
U+003D2 ϒ upsilon;
U+003C5 υ upuparrows;
U+021C8 ⇈ urcorn;
U+0231D ⌝ urcorner;
U+0231D ⌝ urcrop;
U+0230E ⌎ uring;
U+0016F ů urtri;
U+025F9 ◹ uscr;
U+1D4CA 𝓊 utdot;
U+022F0 ⋰ utilde;
U+00169 ũ utri;
U+025B5 ▵ utrif;
U+025B4 ▴ uuarr;
U+021C8 ⇈ uuml;
U+000FC ü uwangle;
U+029A7 ⦧ vArr;
U+021D5 ⇕ vBar;
U+02AE8 ⫨ vBarv;
U+02AE9 ⫩ vDash;
U+022A8 ⊨ vangrt;
U+0299C ⦜ varepsilon;
U+003F5 ϵ varkappa;
U+003F0 ϰ varnothing;
U+02205 ∅ varphi;
U+003D5 ϕ varpi;
U+003D6 ϖ varpropto;
U+0221D ∝ varr;
U+02195 ↕ varrho;
U+003F1 ϱ varsigma;
U+003C2 ς varsubsetneq;
U+0228A U+0FE00 ⊊︀ varsubsetneqq;
U+02ACB U+0FE00 ⫋︀ varsupsetneq;
U+0228B U+0FE00 ⊋︀ varsupsetneqq;
U+02ACC U+0FE00 ⫌︀ vartheta;
U+003D1 ϑ vartriangleleft;
U+022B2 ⊲ vartriangleright;
U+022B3 ⊳ vcy;
U+00432 в vdash;
U+022A2 ⊢ vee;
U+02228 ∨ veebar;
U+022BB ⊻ veeeq;
U+0225A ≚ vellip;
U+022EE ⋮ verbar;
U+0007C | vert;
U+0007C | vfr;
U+1D533 𝔳 vltri;
U+022B2 ⊲ vnsub;
U+02282 U+020D2 ⊂⃒ vnsup;
U+02283 U+020D2 ⊃⃒ vopf;
U+1D567 𝕧 vprop;
U+0221D ∝ vrtri;
U+022B3 ⊳ vscr;
U+1D4CB 𝓋 vsubnE;
U+02ACB U+0FE00 ⫋︀ vsubne;
U+0228A U+0FE00 ⊊︀ vsupnE;
U+02ACC U+0FE00 ⫌︀ vsupne;
U+0228B U+0FE00 ⊋︀ vzigzag;
U+0299A ⦚ wcirc;
U+00175 ŵ wedbar;
U+02A5F ⩟ wedge;
U+02227 ∧ wedgeq;
U+02259 ≙ weierp;
U+02118 ℘ wfr;
U+1D534 𝔴 wopf;
U+1D568 𝕨 wp;
U+02118 ℘ wr;
U+02240 ≀ wreath;
U+02240 ≀ wscr;
U+1D4CC 𝓌 xcap;
U+022C2 ⋂ xcirc;
U+025EF ◯ xcup;
U+022C3 ⋃ xdtri;
U+025BD ▽ xfr;
U+1D535 𝔵 xhArr;
U+027FA ⟺ xharr;
U+027F7 ⟷ xi;
U+003BE ξ xlArr;
U+027F8 ⟸ xlarr;
U+027F5 ⟵ xmap;
U+027FC ⟼ xnis;
U+022FB ⋻ xodot;
U+02A00 ⨀ xopf;
U+1D569 𝕩 xoplus;
U+02A01 ⨁ xotime;
U+02A02 ⨂ xrArr;
U+027F9 ⟹ xrarr;
U+027F6 ⟶ xscr;
U+1D4CD 𝓍 xsqcup;
U+02A06 ⨆ xuplus;
U+02A04 ⨄ xutri;
U+025B3 △ xvee;
U+022C1 ⋁ xwedge;
U+022C0 ⋀ yacute;
U+000FD ý yacy;
U+0044F я ycirc;
U+00177 ŷ ycy;
U+0044B ы yen;
U+000A5 ¥ yfr;
U+1D536 𝔶 yicy;
U+00457 ї yopf;
U+1D56A 𝕪 yscr;
U+1D4CE 𝓎 yucy;
U+0044E ю yuml;
U+000FF ÿ zacute;
U+0017A ź zcaron;
U+0017E ž zcy;
U+00437 з zdot;
U+0017C ż zeetrf;
U+02128 ℨ zeta;
U+003B6 ζ zfr;
U+1D537 𝔷 zhcy;
U+00436 ж zigrarr;
U+021DD ⇝ zopf;
U+1D56B 𝕫 zscr;
U+1D4CF 𝓏 zwj;
U+0200D zwnj;
U+0200C AElig
U+000C6 Æ AMP
U+00026 & Aacute
U+000C1 Á Acirc
U+000C2 Â Agrave
U+000C0 À Aring
U+000C5 Å Atilde
U+000C3 Ã Auml
U+000C4 Ä COPY
U+000A9 © Ccedil
U+000C7 Ç ETH
U+000D0 Ð Eacute
U+000C9 É Ecirc
U+000CA Ê Egrave
U+000C8 È Euml
U+000CB Ë GT
U+0003E > Iacute
U+000CD Í Icirc
U+000CE Î Igrave
U+000CC Ì Iuml
U+000CF Ï LT
U+0003C < Ntilde
U+000D1 Ñ Oacute
U+000D3 Ó Ocirc
U+000D4 Ô Ograve
U+000D2 Ò Oslash
U+000D8 Ø Otilde
U+000D5 Õ Ouml
U+000D6 Ö QUOT
U+00022 " REG
U+000AE ® THORN
U+000DE Þ Uacute
U+000DA Ú Ucirc
U+000DB Û Ugrave
U+000D9 Ù Uuml
U+000DC Ü Yacute
U+000DD Ý aacute
U+000E1 á acirc
U+000E2 â acute
U+000B4 ´ aelig
U+000E6 æ agrave
U+000E0 à amp
U+00026 & aring
U+000E5 å atilde
U+000E3 ã auml
U+000E4 ä brvbar
U+000A6 ¦ ccedil
U+000E7 ç cedil
U+000B8 ¸ cent
U+000A2 ¢ copy
U+000A9 © curren
U+000A4 ¤ deg
U+000B0 ° divide
U+000F7 ÷ eacute
U+000E9 é ecirc
U+000EA ê egrave
U+000E8 è eth
U+000F0 ð euml
U+000EB ë frac12
U+000BD ½ frac14
U+000BC ¼ frac34
U+000BE ¾ gt
U+0003E > iacute
U+000ED í icirc
U+000EE î iexcl
U+000A1 ¡ igrave
U+000EC ì iquest
U+000BF ¿ iuml
U+000EF ï laquo
U+000AB « lt
U+0003C < macr
U+000AF ¯ micro
U+000B5 µ middot
U+000B7 · nbsp
U+000A0 not
U+000AC ¬ ntilde
U+000F1 ñ oacute
U+000F3 ó ocirc
U+000F4 ô ograve
U+000F2 ò ordf
U+000AA ª ordm
U+000BA º oslash
U+000F8 ø otilde
U+000F5 õ ouml
U+000F6 ö para
U+000B6 ¶ plusmn
U+000B1 ± pound
U+000A3 £ quot
U+00022 " raquo
U+000BB » reg
U+000AE ® sect
U+000A7 § shy
U+000AD sup1
U+000B9 ¹ sup2
U+000B2 ² sup3
U+000B3 ³ szlig
U+000DF ß thorn
U+000FE þ times
U+000D7 × uacute
U+000FA ú ucirc
U+000FB û ugrave
U+000F9 ù uml
U+000A8 ¨ uuml
U+000FC ü yacute
U+000FD ý yen
U+000A5 ¥ yuml
U+000FF ÿ
The glyphs displayed above are non-normative. Refer to the Unicode specifications for formal definitions of the characters listed above.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3