Showing content from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461880 below:
Inbreeding depression in small populations of self-incompatible plants
Abstract
Self-incompatibility (SI) is a widespread mechanism that prevents inbreeding in flowering plants. In many species, SI is controlled by a single locus (the S locus) where numerous alleles are maintained by negative frequency-dependent selection. Inbreeding depression, the decline in fitness of selfed individuals compared to outcrossed ones, is an essential factor in the evolution of SI systems. Conversely, breeding systems influence levels of inbreeding depression. Little is known about the joint effect of SI and drift on inbreeding depression. Here we studied, using a two-locus model, the effect of SI (frequency-dependent selection) on a locus subject to recurrent deleterious mutations causing inbreeding depression. Simulations were performed to assess the effect of population size and linkage between the two loci on the level of inbreeding depression and genetic load. We show that the sheltering of deleterious alleles linked to the S locus strengthens inbreeding depression in small populations. We discuss the implications of our results for the evolution of SI systems.
Full Text
The Full Text of this article is available as a PDF (186.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Awadalla P., Charlesworth D. Recombination and selection at Brassica self-incompatibility loci. Genetics. 1999 May;152(1):413–425. doi: 10.1093/genetics/152.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bataillon T., Kirkpatrick M. Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet Res. 2000 Feb;75(1):75–81. doi: 10.1017/s0016672399004048. [DOI] [PubMed] [Google Scholar]
- Boyes D. C., Nasrallah M. E., Vrebalov J., Nasrallah J. B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell. 1997 Feb;9(2):237–247. doi: 10.1105/tpc.9.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casselman A. L., Vrebalov J., Conner J. A., Singhal A., Giovannoni J., Nasrallah M. E., Nasrallah J. B. Determining the physical limits of the Brassica S locus by recombinational analysis. Plant Cell. 2000 Jan;12(1):23–33. doi: 10.1105/tpc.12.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
- Charlesworth D., Morgan M. T., Charlesworth B. The effect of linkage and population size on inbreeding depression due to mutational load. Genet Res. 1992 Feb;59(1):49–61. doi: 10.1017/s0016672300030160. [DOI] [PubMed] [Google Scholar]
- Colas B., Olivieri I., Riba M. Centaurea corymbosa, a cliff-dwelling species tottering on the brink of extinction: a demographic and genetic study. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3471–3476. doi: 10.1073/pnas.94.7.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M., MARUYAMA T., CROW J. F. THE MUTATION LOAD IN SMALL POPULATIONS. Genetics. 1963 Oct;48:1303–1312. doi: 10.1093/genetics/48.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao T. H., McCubbin A. G. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12059–12065. doi: 10.1073/pnas.93.22.12059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Kimura M. Development of associative overdominance through linkage disequilibrium in finite populations. Genet Res. 1970 Oct 2;16(2):165–177. doi: 10.1017/s0016672300002391. [DOI] [PubMed] [Google Scholar]
- Schierup M. H., Charlesworth D., Vekemans X. The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population. Genet Res. 2000 Aug;76(1):63–73. doi: 10.1017/s0016672300004547. [DOI] [PubMed] [Google Scholar]
- Schierup M. H., Vekemans X., Christiansen F. B. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants. Genetics. 1997 Oct;147(2):835–846. doi: 10.1093/genetics/147.2.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
- Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991 Oct;58(2):167–175. doi: 10.1017/s0016672300029827. [DOI] [PubMed] [Google Scholar]
- Strobeck C. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics. 1983 Mar;103(3):545–555. doi: 10.1093/genetics/103.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Satta Y. Footprints of intragenic recombination at HLA loci. Immunogenetics. 1998 May;47(6):430–441. doi: 10.1007/s002510050380. [DOI] [PubMed] [Google Scholar]
- Uyenoyama M. K. Genealogical structure among alleles regulating self-incompatibility in natural populations of flowering plants. Genetics. 1997 Nov;147(3):1389–1400. doi: 10.1093/genetics/147.3.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K. On the evolution of genetic incompatibility systems. III. Introduction of weak gametophytic self-incompatibility under partial inbreeding. Theor Popul Biol. 1988 Aug;34(1):47–91. doi: 10.1016/0040-5809(88)90035-4. [DOI] [PubMed] [Google Scholar]
- Uyenoyama M. K. On the evolution of genetic incompatibility systems. V. Origin of sporophytic self-incompatibility in response to overdominance in viability. Theor Popul Biol. 1989 Dec;36(3):339–365. doi: 10.1016/0040-5809(89)90038-5. [DOI] [PubMed] [Google Scholar]
- Uyenoyama M. K. On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility. Genetics. 1991 Jun;128(2):453–469. doi: 10.1093/genetics/128.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vekemans X., Slatkin M. Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics. 1994 Aug;137(4):1157–1165. doi: 10.1093/genetics/137.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willis J. H. Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics. 1999 Dec;153(4):1885–1898. doi: 10.1093/genetics/153.4.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. doi: 10.1093/genetics/24.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama S., Nei M. Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics. 1979 Mar;91(3):609–626. doi: 10.1093/genetics/91.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4