Showing content from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378024 below:
Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus
Abstract
The Duffy blood group locus, which encodes a chemokine receptor, is characterized by three alleles-FY*A, FY*B, and FY*O. The frequency of the FY*O allele, which corresponds to the absence of Fy antigen on red blood cells, is at or near fixation in most sub-Saharan African populations but is very rare outside Africa. The FST value for the FY*O allele is the highest observed for any allele in humans, providing strong evidence for the action of natural selection at this locus. Homozygosity for the FY*O allele confers complete resistance to vivax malaria, suggesting that this allele has been the target of selection by Plasmodium vivax or some other infectious agent. To characterize the signature of directional selection at this locus, we surveyed DNA sequence variation, both in a 1.9-kb region centered on the FY*O mutation site and in a 1-kb region 5-6 kb away from it, in 17 Italians and in a total of 24 individuals from five sub-Saharan African populations. The level of variation across both regions is two- to threefold lower in the Africans than in the Italians. As a result, the pooled African sample shows a significant departure from the neutral expectation for the number of segregating sites, whereas the Italian sample does not. The FY*O allele occurs on two major haplotypes in three of the five African populations. This finding could be due to recombination, recurrent mutation, population structure, and/or mutation accumulation and drift. Although we are unable to distinguish among these alternative hypotheses, it is likely that the two major haplotypes originated prior to selection on the FY*O mutation.
Full Text
The Full Text of this article is available as a PDF (238.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguadé M. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics. 1998 Nov;150(3):1079–1089. doi: 10.1093/genetics/150.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey W. J., Fitch D. H., Tagle D. A., Czelusniak J., Slightom J. L., Goodman M. Molecular evolution of the psi eta-globin gene locus: gibbon phylogeny and the hominoid slowdown. Mol Biol Evol. 1991 Mar;8(2):155–184. doi: 10.1093/oxfordjournals.molbev.a040641. [DOI] [PubMed] [Google Scholar]
- Bruce M. C., Donnelly C. A., Alpers M. P., Galinski M. R., Barnwell J. W., Walliker D., Day K. P. Cross-species interactions between malaria parasites in humans. Science. 2000 Feb 4;287(5454):845–848. doi: 10.1126/science.287.5454.845. [DOI] [PubMed] [Google Scholar]
- Chaudhuri A., Polyakova J., Zbrzezna V., Pogo A. O. The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood. 1995 Feb 1;85(3):615–621. [PubMed] [Google Scholar]
- Clark A. G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol. 1990 Mar;7(2):111–122. doi: 10.1093/oxfordjournals.molbev.a040591. [DOI] [PubMed] [Google Scholar]
- Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M., Porter C. A., Czelusniak J., Page S. L., Schneider H., Shoshani J., Gunnell G., Groves C. P. Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol. 1998 Jun;9(3):585–598. doi: 10.1006/mpev.1998.0495. [DOI] [PubMed] [Google Scholar]
- Hadley T. J., Peiper S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood. 1997 May 1;89(9):3077–3091. [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorde L. B., Bamshad M., Rogers A. R. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. Bioessays. 1998 Feb;20(2):126–136. doi: 10.1002/(SICI)1521-1878(199802)20:2<126::AID-BIES5>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Karn R. C., Nachman M. W. Reduced nucleotide variability at an androgen-binding protein locus (Abpa) in house mice: evidence for positive natural selection. Mol Biol Evol. 1999 Sep;16(9):1192–1197. doi: 10.1093/oxfordjournals.molbev.a026209. [DOI] [PubMed] [Google Scholar]
- Livingstone F. B. The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum Biol. 1984 Sep;56(3):413–425. [PubMed] [Google Scholar]
- Metz E. C., Palumbi S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol. 1996 Feb;13(2):397–406. doi: 10.1093/oxfordjournals.molbev.a025598. [DOI] [PubMed] [Google Scholar]
- Metz E. C., Robles-Sikisaka R., Vacquier V. D. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10676–10681. doi: 10.1073/pnas.95.18.10676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5;295(6):302–304. doi: 10.1056/NEJM197608052950602. [DOI] [PubMed] [Google Scholar]
- Nachman M. W., Bauer V. L., Crowell S. L., Aquadro C. F. DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998 Nov;150(3):1133–1141. doi: 10.1093/genetics/150.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsson M. L., Smythe J. S., Hansson C., Poole J., Mallinson G., Jones J., Avent N. D., Daniels G. The Fy(x) phenotype is associated with a missense mutation in the Fy(b) allele predicting Arg89Cys in the Duffy glycoprotein. Br J Haematol. 1998 Dec;103(4):1184–1191. doi: 10.1046/j.1365-2141.1998.01083.x. [DOI] [PubMed] [Google Scholar]
- Pease J. E., Murphy P. M. Microbial corruption of the chemokine system: an expanding paradigm. Semin Immunol. 1998 Jun;10(3):169–178. doi: 10.1006/smim.1998.0129. [DOI] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
- Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M., Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res. 1998 Apr;71(2):155–160. doi: 10.1017/s001667239800319x. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
- Stephens J. C., Reich D. E., Goldstein D. B., Shin H. D., Smith M. W., Carrington M., Winkler C., Huttley G. A., Allikmets R., Schriml L. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998 Jun;62(6):1507–1515. doi: 10.1086/301867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tournamille C., Colin Y., Cartron J. P., Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995 Jun;10(2):224–228. doi: 10.1038/ng0695-224. [DOI] [PubMed] [Google Scholar]
- Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
- Wang R. L., Stec A., Hey J., Lukens L., Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. doi: 10.1038/18435. [DOI] [PubMed] [Google Scholar]
- Watson E., Forster P., Richards M., Bandelt H. J. Mitochondrial footprints of human expansions in Africa. Am J Hum Genet. 1997 Sep;61(3):691–704. doi: 10.1086/515503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
- Williams T. N., Maitland K., Bennett S., Ganczakowski M., Peto T. E., Newbold C. I., Bowden D. K., Weatherall D. J., Clegg J. B. High incidence of malaria in alpha-thalassaemic children. Nature. 1996 Oct 10;383(6600):522–525. doi: 10.1038/383522a0. [DOI] [PubMed] [Google Scholar]
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4