A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://www.mathsisfun.com/geometry/../pythagoras.html below:

Pythagorean Theorem

Pythagorean Theorem


Pythagoras

Over 2000 years ago there was an amazing discovery about triangles:

When a triangle has a right angle (90°) ...

... and squares are made on each of the three sides, ...

geometry/images/pyth1.js

... then the biggest square has the exact same area as the other two squares put together! (press Go).

It is the "Pythagorean Theorem" and can be written in one short equation:

a2 + b2 = c2

Note:

Definition

The longest side of the triangle is called the "hypotenuse", so the formal definition is:

In a right angled triangle:
the square of the hypotenuse is equal to
the sum of the squares of the other two sides.

Sure ... ?

Let's see if it really works using an example.

Example: A "3, 4, 5" triangle has a right angle in it.

Let's check if the areas are the same:

32 + 42 = 52

Calculating this becomes:

9 + 16 = 25

It works ... like Magic!

Why Is This Useful?

When we know two side lengths of a right triangle we can find the third side length.

How Do I Use it?

Write it down as an equation:

  a2 + b2 = c2


Then we use algebra to find any missing value, as in these examples:

Example: Solve this triangle

Start with:a2 + b2 = c2

Put in what we know:52 + 122 = c2

Calculate squares:25 + 144 = c2

25+144=169:169 = c2

Swap sides:c2 = 169

Square root of both sides:c = √169

Calculate:c = 13

Read about Squares and Square Roots to discover why √169 = 13

Example: Solve this triangle.

Start with:a2 + b2 = c2

Put in what we know:92 + b2 = 152

Calculate squares:81 + b2 = 225

Take 81 from both sides: 81 − 81 + b2 = 225 − 81

Calculate: b2 = 144

Square root of both sides:b = √144

Calculate:b = 12

Example: What is the diagonal distance across a square of size 1?

Start with:a2 + b2 = c2

Put in what we know:12 + 12 = c2

Calculate squares:1 + 1 = c2

1+1=2: 2 = c2

Swap sides: c2 = 2

Square root of both sides:c = √2

Which is about:c = 1.4142...


Is it a Right Angle?

It works the other way around, too: when the three sides of a triangle make a2 + b2 = c2, then the triangle is right angled.

Example: Does this triangle have a Right Angle?

Does a2 + b2 = c2 ?

They are equal, so ...

Yes, it does have a Right Angle!

Example: Does an 8, 15, 16 triangle have a Right Angle?

Does 82 + 152 = 162 ?

So, NO, it does not have a Right Angle

Example: Does this triangle have a Right Angle?

Does a2 + b2 = c2 ?

Does (√3)2 + (√5)2 = (√8)2 ?

Does 3 + 5 = 8 ?

Yes, it does!

So this is a right-angled triangle

And You Can Prove The Theorem Yourself !

Get paper pen and scissors, then using the following animation as a guide:

Another, Amazingly Simple, Proof

Here is one of the oldest proofs that the square on the long side has the same area as the other squares.

Watch the animation, and pay attention when the triangles start sliding around.

You may want to watch the animation a few times to understand what is happening.

The purple triangle is the important one.

We also have a proof by adding up the areas.

Historical Note: while we call it Pythagorean Theorem, it was also known by Indian, Greek, Chinese and Babylonian mathematicians well before he lived.

511,512,617,618, 1145, 1146, 1147, 2359, 2360, 2361


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4