For any two positive integers x and y define F(x,y) = xy (mod x+y). Given two initial values x[0] and x[1] we can form a sequence using the recurrence x[n] = F( x[n-1] , x[n-2] ) For some initial values this produces a trivial outcome. For example, if x[1] = x[0] is odd, then x[n] = x[0] for all n. Slightly less obvious is the fact that if x[0]=2k and x[1]=2k-6 then x[n]=2k-6n for all n up to k/3, at which point the sequence terminates with a value of 0. Most initial values lead to a fixed point, but some lead to a limit cycle. The smallest limit cycle is {5,7,11}. Of course, it follows that {7,5,11} is also a limit cycle. (I wonder if it's true that if xy = z (mod x+y) and xz = y (mod x+z) then yz = x (mod y+z).) Anyway, here are several examples of limit cycles with period 3 (along with their gcd factorizations): {5,7,11} 1*[5,7,11] {69,99,111} 3*[23,33,37] {87,111,153} 3*[29,37,51] {184,704,776} 8*[23,88,97] {125,475,575} 25*[5,19,23] {384,864,1056} 96*[4,9,11] {315,525,735} 105*[3,5,7] {324,756,864} 108*[3,7,8] {1575,2205,2835} 45*[35,49,63] The smallest limit cycles with period 4 are {96,304,384,464} 16*[6,19,24,29] {128,192,256,320} 64*[2,3,4,5] {243,1701,1215,2187} 243*[1,7,5,9] {495,1375,1815,1045} 55*[9,25,33,19] {1331,1815,2783,2541} 121*[11,15,23,21] There smallest examples with period 5 are {124,310,248,434,558} 62*[2,5,4,7,9] {243,621,567,549,675} 9*[27,69,63,61,75] {392,490,686,980,882} 14*[4,5,7,10,9] Here are limit cycles with periods 6 and 7: {23,61,59,119,79,95} 1*[23,61,59,119,79,95] {77,343,371,161,147,259,315} 7*[11,49,53,23,21,37,45] The table below presents one cycle for for each of the periods 8 through 19, and also a cycle of period 22. T=8, gcd=59 T=9, gcd=65 T=10, gcd=441 T=11, gcd=319 1711 29 455 7 3087 7 15631 49 6431 109 1235 19 10143 23 10527 33 3599 61 845 13 9261 21 13717 43 5959 101 1495 23 18963 43 1595 5 7847 133 2015 31 6615 15 13079 41 13157 223 845 13 5733 13 9251 29 8319 141 975 15 3087 7 9889 31 11387 193 1235 19 4851 11 13079 41 1885 29 3969 9 5423 17 8379 19 9251 29 12441 39 T=12, gcd=1023 T=13, gcd=71 T=14, gcd=7161 T=15, gcd=107 17391 17 35855 505 279279 39 17441 163 25575 25 29749 419 136059 19 13375 125 33759 33 60563 853 393855 55 27071 253 17391 17 54599 769 494109 69 2033 19 3069 3 32731 461 221991 31 28783 269 13299 13 46079 649 565719 79 27071 253 9207 9 24779 349 708939 99 21293 199 11253 11 56587 797 594363 83 20651 193 17391 17 70361 991 451143 63 22791 213 5115 5 47783 673 737583 103 6313 59 11253 11 35855 505 93093 13 18511 173 9207 9 18673 263 136059 19 13375 125 25631 361 221991 31 21721 203 207669 29 28783 269 6527 61 T=16, gcd=12051 T=17, gcd=75087 T=18, gcd=551 T=19, gcd=4875 445887 37 2027349 27 143811 261 375375 77 397683 33 1276479 17 330049 599 687375 141 735111 61 3078567 41 15979 29 443625 91 1000233 83 2628045 35 40223 73 1038375 213 1409967 117 675783 9 53447 97 531375 109 735111 61 2177523 29 72181 131 960375 197 2012517 167 375435 5 73283 133 541125 111 1554579 129 2477871 33 132791 241 258375 53 2374047 197 1877175 25 96425 175 609375 125 1988415 165 3679263 49 137199 249 102375 21 1072539 89 1426653 19 220951 401 589875 121 277173 23 1877175 25 82099 149 24375 5 735111 61 976131 13 192299 349 453375 93 397683 33 1276479 17 66671 121 180375 37 1000233 83 2027349 27 197809 359 316875 65 60255 5 3078567 41 93119 169 424125 87 976131 13 251807 457 180375 37 291479 529 258375 53 365625 75 T=22, gcd=1129 624337 553 649175 575 1136903 1007 495631 439 567887 503 235961 209 134351 119 296927 263 86933 77 89191 79 134351 119 154673 137 224671 199 351119 311 147899 131 339829 301 486599 431 473051 419 655949 581 712399 631 1096259 971 716915 635 It can be shown that there exists a cycle of length n for every positive integer n. See More Results on the Form xy (mod x+y). There is an interesting class of cycles of period 9, in which the cycle consists of just four distinct numbers in the pattern A BC A DB A CD. Several examples are shown below 3575 9295 12155 3575 7865 9295 3575 12155 7865 5 11 13 5 13 17 5 11 13 5 17 11 8381 5423 7395 8381 9367 5423 8381 7395 9367 17 29 17 11 15 17 19 11 17 15 19 8300 5810 9130 8300 10790 5810 8300 9130 10790 2 5 83 10 7 11 10 13 7 10 11 13 52731 29295 41013 52731 76167 29295 52731 41013 76167 3 3 3 7 31 9 5 7 9 13 5 9 7 13 72471 123627 46893 72471 89523 123627 72471 46893 89523 3 7 7 29 17 29 11 17 21 29 17 11 21 132759 122925 113091 132759 34419 122925 132759 113091 34419 3 11 149 27 25 23 27 7 25 27 23 7 106029 82467 129591 106029 223839 82467 106029 129591 223839 3 3 7 11 17 9 7 11 9 19 7 9 11 19 197519 245891 116899 197519 173333 245891 197519 116899 173333 29 139 49 61 29 49 43 61 49 29 43 931095 517275 1344915 931095 1138005 517275 931095 1344915 1138005 3 3 5 11 11 19 9 5 13 9 11 5 9 13 11 1576575 735735 1156155 1576575 1366365 735735 1576575 1156155 1366365 3 5 7 7 11 13 15 7 11 15 13 7 15 11 13 In many of these cycles the reduced term appearing three times (i.e., the "A" term of the cycle) is the product of the first two or three prime divisors of the cycle's greatest common divisor. Another interesting cycle of period 9 is shown below. In this cycle the greatest common divisor of the cycle is one of the terms of the cycle. 80087 51821 98931 80087 108353 4711 80087 23555 61243 7 673 17 11 21 17 23 1 17 5 13Return to MathPages Main Menu
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4