A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://www.arrayfire.org/docs/machine_learning_2rbm_8cpp-example.htm below:

ArrayFire: machine_learning/rbm.cpp

#include <math.h>

#include <stdio.h>

#include <string>

#include <vector>

#include "mnist_common.h"

using std::vector;

float

accuracy(

const array

&predicted,

const array

&target) {

array

val, plabels, tlabels;

max(val, tlabels, target, 1);

max(val, plabels, predicted, 1);

return

100 * count<float>(plabels == tlabels) / tlabels.

elements

();

}

array

deriv(

const array

&out) {

return

out * (1 - out); }

double

error(

const array

&out,

const array

&pred) {

array

dif = (out - pred);

return sqrt

((

double

)(sum<float>(dif * dif)));

}

}

class rbm {

private:

array

vtoh(

const array

&v) {

return

binary(prop_up(v)); }

array

htov(

const array

&h) {

return

binary(prop_down(h)); }

public:

rbm() {}

rbm(int v_size, int h_size)

: weights(

randu

(h_size, v_size) / 100 - 0.05)

}

}

vt = v;

for (int i = 0; i < k; i++) {

ht = vtoh(vt);

vt = htov(ht);

}

}

ht = h;

for (int i = 0; i < k; i++) {

vt = htov(ht);

ht = vtoh(vt);

}

}

void

train(

const array

&in,

double

lr = 0.1,

int

num_epochs = 15,

int batch_size = 100, int k = 1, bool verbose = false) {

const int

num_samples = in.

dims

(0);

const int num_batches = num_samples / batch_size;

for (int i = 0; i < num_epochs; i++) {

double err = 0;

for (int j = 0; j < num_batches - 1; j++) {

int st = j * batch_size;

int en = std::min(num_samples - 1, st + batch_size - 1);

int num = en - st + 1;

array

h_pos = vtoh(v_pos);

gibbs_hvh(v_neg, h_neg, h_pos, k);

array

delta_w = lr * (c_pos - c_neg) / num;

array

delta_vb = lr *

sum

(v_pos - v_neg) / num;

array

delta_hb = lr *

sum

(h_pos - h_neg) / num;

weights += delta_w;

v_bias += delta_vb;

h_bias += delta_hb;

if (verbose) { err += error(v_pos, v_neg); }

}

if (verbose) {

printf("Epoch %d: Reconstruction error: %0.4f\n", i + 1,

err / num_batches);

}

}

if (verbose) printf("\n");

}

};

int rbm_demo(bool , int perc) {

printf("** ArrayFire RBM Demo **\n\n");

array

train_images, test_images;

array

train_target, test_target;

int num_classes, num_train, num_test;

float frac = (float)(perc) / 100.0;

setup_mnist<true>(&num_classes, &num_train, &num_test, train_images,

test_images, train_target, test_target, frac);

int

feature_size = train_images.

elements

() / num_train;

array

train_feats =

moddims

(train_images, feature_size, num_train).

T

();

array

test_feats =

moddims

(test_images, feature_size, num_test).

T

();

train_target = train_target.

T

();

test_target = test_target.

T

();

rbm network(train_feats.

dims

(1), 2000);

network.train(train_feats,

0.1,

15,

100,

1,

true);

for (int ii = 0; ii < 5; ii++) {

array

in = test_feats(ii, span);

network.gibbs_vhv(res, tmp, in);

in =

moddims

(in, dims[0], dims[1]);

res =

moddims

(res, dims[0], dims[1]);

printf("Reconstructed Error for image %2d: %.4f\n", ii,

sum<float>(

abs

(in - res)) / feature_size);

}

return 0;

}

int main(int argc, char **argv) {

int device = argc > 1 ? atoi(argv[1]) : 0;

bool console = argc > 2 ? argv[2][0] == '-' : false;

int perc = argc > 3 ? atoi(argv[3]) : 60;

try {

return rbm_demo(console, perc);

return 0;

}

A multi dimensional data container.

dim4 dims() const

Get dimensions of the array.

const array as(dtype type) const

Casts the array into another data type.

array T() const

Get the transposed the array.

dim_t elements() const

Get the total number of elements across all dimensions of the array.

Generic object that represents size and shape.

An ArrayFire exception class.

virtual const char * what() const

Returns an error message for the exception in a string format.

seq is used to create sequences for indexing af::array

@ f32

32-bit floating point values

AFAPI array abs(const array &in)

C++ Interface to calculate the absolute value.

AFAPI array round(const array &in)

C++ Interface to round numbers.

AFAPI array sigmoid(const array &in)

C++ Interface to evaluate the logistical sigmoid function.

AFAPI array sqrt(const array &in)

C++ Interface to evaluate the square root.

AFAPI array matmulTN(const array &lhs, const array &rhs)

C++ Interface to multiply two matrices.

AFAPI array matmul(const array &lhs, const array &rhs, const matProp optLhs=AF_MAT_NONE, const matProp optRhs=AF_MAT_NONE)

C++ Interface to multiply two matrices.

AFAPI array matmulNT(const array &lhs, const array &rhs)

C++ Interface to multiply two matrices.

array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)

C++ Interface to generate an array with elements set to a specified value.

AFAPI void setDevice(const int device)

Sets the current device.

AFAPI array moddims(const array &in, const dim4 &dims)

C++ Interface to modify the dimensions of an input array to a specified shape.

AFAPI array tile(const array &in, const unsigned x, const unsigned y=1, const unsigned z=1, const unsigned w=1)

C++ Interface to generate a tiled array.

AFAPI array randu(const dim4 &dims, const dtype ty, randomEngine &r)

C++ Interface to create an array of random numbers uniformly distributed.

AFAPI array sum(const array &in, const int dim=-1)

C++ Interface to sum array elements over a given dimension.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4