A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://www.arrayfire.org/docs/machine_learning_2naive_bayes_8cpp-example.htm below:

ArrayFire: machine_learning/naive_bayes.cpp

#include <math.h>

#include <stdio.h>

#include <string>

#include <vector>

#include "mnist_common.h"

float

accuracy(

const array

&predicted,

const array

&target) {

return

100 * count<float>(predicted == target) / target.

elements

();

}

void

naive_bayes_train(

float

*priors,

array

&mu,

array

&sig2,

const array

&train_feats,

const array

&train_classes,

int num_classes) {

const int

feat_len = train_feats.

dims

(0);

const int

num_samples = train_classes.

elements

();

mu = constant(0, feat_len, num_classes);

sig2 = constant(0, feat_len, num_classes);

for (int ii = 0; ii < num_classes; ii++) {

array

idx = where(train_classes == ii);

array

train_feats_ii = lookup(train_feats, idx, 1);

mu(span, ii) = mean(train_feats_ii, 1);

priors[ii] = (float)idx.

elements

() / (float)num_samples;

}

}

array

naive_bayes_predict(

float

*priors,

const array

&mu,

const array

&sig2,

const array

&test_feats,

int

num_classes) {

int

num_test = test_feats.

dims

(1);

for (int ii = 0; ii < num_classes; ii++) {

array

Sig2 =

tile

(sig2(span, ii), 1, num_test);

array

Df = test_feats - Mu;

log_probs(span, ii) =

log

(priors[ii]) +

sum

(log_P).

T

();

}

max

(val, idx, log_probs, 1);

return idx;

}

void

benchmark_nb(

const array

&train_feats,

const array

test_feats,

const array

&train_labels,

int

num_classes) {

int iter = 25;

float *priors = new float[num_classes];

timer::start();

for (int i = 0; i < iter; i++) {

naive_bayes_train(priors, mu, sig2, train_feats, train_labels,

num_classes);

}

printf("Training time: %4.4lf s\n", timer::stop() / iter);

timer::start();

for (int i = 0; i < iter; i++) {

naive_bayes_predict(priors, mu, sig2, test_feats, num_classes);

}

printf("Prediction time: %4.4lf s\n", timer::stop() / iter);

delete[] priors;

}

void naive_bayes_demo(bool console, int perc) {

array

train_images, train_labels;

array

test_images, test_labels;

int num_train, num_test, num_classes;

float frac = (float)(perc) / 100.0;

setup_mnist<false>(&num_classes, &num_train, &num_test, train_images,

test_images, train_labels, test_labels, frac);

int

feature_length = train_images.

elements

() / num_train;

array

train_feats =

moddims

(train_images, feature_length, num_train);

array

test_feats =

moddims

(test_images, feature_length, num_test);

float *priors = new float[num_classes];

naive_bayes_train(priors, mu, sig2, train_feats, train_labels, num_classes);

naive_bayes_predict(priors, mu, sig2, test_feats, num_classes);

delete[] priors;

printf("Trainng samples: %4d, Testing samples: %4d\n", num_train, num_test);

printf("Accuracy on testing data: %2.2f\n",

accuracy(res_labels, test_labels));

benchmark_nb(train_feats, test_feats, train_labels, num_classes);

if (!console) {

test_images = test_images.

T

();

test_labels = test_labels.

T

();

}

}

int main(int argc, char **argv) {

int device = argc > 1 ? atoi(argv[1]) : 0;

bool console = argc > 2 ? argv[2][0] == '-' : false;

int perc = argc > 3 ? atoi(argv[3]) : 60;

try {

naive_bayes_demo(console, perc);

return 0;

}

A multi dimensional data container.

dim4 dims() const

Get dimensions of the array.

void eval() const

Evaluate any JIT expressions to generate data for the array.

array T() const

Get the transposed the array.

dim_t elements() const

Get the total number of elements across all dimensions of the array.

An ArrayFire exception class.

virtual const char * what() const

Returns an error message for the exception in a string format.

@ AF_VARIANCE_SAMPLE

Sample variance.

AFAPI array log(const array &in)

C++ Interface to evaluate the natural logarithm.

AFAPI array sqrt(const array &in)

C++ Interface to evaluate the square root.

array constant(T val, const dim4 &dims, const dtype ty=(af_dtype) dtype_traits< T >::ctype)

C++ Interface to generate an array with elements set to a specified value.

AFAPI void setDevice(const int device)

Sets the current device.

AFAPI void sync(const int device=-1)

Blocks until the device is finished processing.

AFAPI array moddims(const array &in, const dim4 &dims)

C++ Interface to modify the dimensions of an input array to a specified shape.

AFAPI array tile(const array &in, const unsigned x, const unsigned y=1, const unsigned z=1, const unsigned w=1)

C++ Interface to generate a tiled array.

AFAPI array max(const array &in, const int dim=-1)

C++ Interface to return the maximum along a given dimension.

AFAPI array sum(const array &in, const int dim=-1)

C++ Interface to sum array elements over a given dimension.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4