A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://umontreal-simul.github.io/ssj/docs/master/classumontreal_1_1ssj_1_1util_1_1Misc.html below:

SSJ: Misc Class Reference

This class provides miscellaneous functions that are hard to classify. More...

static double  quickSelect (double[] A, int n, int k)   Returns the \(k^{th}\) smallest item of the array \(A\) of size \(n\). More...
  static int  quickSelect (int[] A, int n, int k)   Returns the \(k^{th}\) smallest item of the array \(A\) of size \(n\). More...
  static double  getMedian (double[] A, int n)   Returns the median of the first \(n\) elements of array \(A\). More...
  static double  getMedian (int[] A, int n)   Returns the median of the first \(n\) elements of array \(A\). More...
  static int  getTimeInterval (double[] times, int start, int end, double t)   Returns the index of the time interval corresponding to time t. More...
  static void  interpol (int n, double[] X, double[] Y, double[] C)   Computes the Newton interpolating polynomial. More...
  static double  evalPoly (int n, double[] X, double[] C, double z)   Given \(n\), \(X\) and \(C\) as described in interpol(n, X, Y, C), this function returns the value of the interpolating polynomial \(P(z)\) evaluated at \(z\) (see eq. More...
  static double  evalPoly (double[] C, int n, double x)   Evaluates the polynomial \(P(x)\) of degree \(n\) with coefficients \(c_j =\) C[j] at \(x\): More...
 

This class provides miscellaneous functions that are hard to classify.

Some may be moved to another class in the future.

◆ evalPoly() [1/2] static double evalPoly ( int  n, double []  X, double []  C, double  z  ) static

Given \(n\), \(X\) and \(C\) as described in interpol(n, X, Y, C), this function returns the value of the interpolating polynomial \(P(z)\) evaluated at \(z\) (see eq.

eq.newton.interpol ).

Parameters
n degree of the interpolating polynomial X \(x\)-coordinates of points C Coefficients of the interpolating polynomial z argument where polynomial is evaluated
Returns
Value of the interpolating polynomial \(P(z)\)
◆ evalPoly() [2/2] static double evalPoly ( double []  C, int  n, double  x  ) static

Evaluates the polynomial \(P(x)\) of degree \(n\) with coefficients \(c_j =\) C[j] at \(x\):

\[ \qquad P(x) = c_0 + c_1 x + c_2 x^2 + \cdots+ c_n x^n \tag{eq.horner} \]

Parameters
C Coefficients of the polynomial n degree of the polynomial x argument where polynomial is evaluated
Returns
Value of the polynomial \(P(x)\)
◆ getMedian() [1/2] static double getMedian ( double []  A, int  n  ) static

Returns the median of the first \(n\) elements of array \(A\).

Parameters
A the array n the number of used elements
Returns
the median of \(A\)
◆ getMedian() [2/2] static double getMedian ( int []  A, int  n  ) static

Returns the median of the first \(n\) elements of array \(A\).

Parameters
A the array n the number of used elements
Returns
the median of \(A\)
◆ getTimeInterval() static int getTimeInterval ( double []  times, int  start, int  end, double  t  ) static

Returns the index of the time interval corresponding to time t.

Let \(t_0\le\cdots\le t_n\) be simulation times stored in a subset of times. This method uses binary search to determine the smallest value \(i\) for which \(t_i\le t < t_{i+1}\), and returns \(i\). The value of \(t_i\) is stored in times[start+i] whereas \(n\) is defined as end - start. If \(t<t_0\), this returns \(-1\). If \(t\ge t_n\), this returns \(n\). Otherwise, the returned value is greater than or equal to 0, and smaller than or equal to \(n-1\). start and end are only used to set lower and upper limits of the search in the times array; the index space of the returned value always starts at 0. Note that if the elements of times with indices start, …, end are not sorted in non-decreasing order, the behavior of this method is undefined.

Parameters
times an array of simulation times. start the first index in the array to consider. end the last index (inclusive) in the array to consider. t the queried simulation time.
Returns
the index of the interval.
Exceptions
NullPointerException if times is null. IllegalArgumentException if start is negative, or if end is smaller than start. ArrayIndexOutOfBoundsException if start + end is greater than or equal to the length of times.
◆ interpol() static void interpol ( int  n, double []  X, double []  Y, double []  C  ) static

Computes the Newton interpolating polynomial.

Given the \(n+1\) real distinct points \((x_0, y_0),\) \((x_1, y_1),…, (x_n, y_n)\), with X[i] \(= x_i\), Y[i] \(= y_i\), this function computes the \(n+1\) coefficients C[i] \(= c_i\) of the Newton interpolating polynomial \(P(x)\) of degree \(n\) passing through these points, i.e. such that \(y_i= P(x_i)\), given by

\[ \qquad P(x) = c_0 + c_1(x-x_0) + c_2(x-x_0)(x-x_1) + \cdots+ c_n(x-x_0)(x-x_1) \cdots(x-x_{n-1}). \tag{eq.newton.interpol} \]

Parameters
n degree of the interpolating polynomial X \(x\)-coordinates of points Y \(y\)-coordinates of points C Coefficients of the interpolating polynomial
◆ quickSelect() [1/2] static double quickSelect ( double []  A, int  n, int  k  ) static

Returns the \(k^{th}\) smallest item of the array \(A\) of size \(n\).

Array \(A\) is unchanged by the method. Restriction: \(1 \le k \le n\).

Parameters
A the array which contain the items n the number of items in the array k the index of the smallest item
Returns
the kth smallest item of the array \(A\)
◆ quickSelect() [2/2] static int quickSelect ( int []  A, int  n, int  k  ) static

Returns the \(k^{th}\) smallest item of the array \(A\) of size \(n\).

Array \(A\) is unchanged by the method. Restriction: \(1 \le k \le n\).

Parameters
A the array which contain the items n the number of items in the array k the index of the smallest item
Returns
the kth smallest item of the array \(A\)

The documentation for this class was generated from the following file:


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4