"""Abstract base classes for models (taggers, noun phrase extractors, etc.) which define the interface for descendant classes. .. versionchanged:: 0.7.0 All base classes are defined in the same module, ``textblob.base``. """ from __future__ import annotations from abc import ABCMeta, abstractmethod from typing import TYPE_CHECKING import nltk if TYPE_CHECKING: from typing import Any, AnyStr ##### POS TAGGERS ##### [docs] class BaseTagger(metaclass=ABCMeta): """Abstract tagger class from which all taggers inherit from. All descendants must implement a ``tag()`` method. """ [docs] @abstractmethod def tag(self, text: str, tokenize=True) -> list[tuple[str, str]]: """Return a list of tuples of the form (word, tag) for a given set of text or BaseBlob instance. """ ... ##### NOUN PHRASE EXTRACTORS ##### ##### TOKENIZERS ##### [docs] class BaseTokenizer(nltk.tokenize.api.TokenizerI, metaclass=ABCMeta): # pyright: ignore """Abstract base class from which all Tokenizer classes inherit. Descendant classes must implement a ``tokenize(text)`` method that returns a list of noun phrases as strings. """ [docs] @abstractmethod def tokenize(self, text: str) -> list[str]: """Return a list of tokens (strings) for a body of text. :rtype: list """ ... [docs] def itokenize(self, text: str, *args, **kwargs): """Return a generator that generates tokens "on-demand". .. versionadded:: 0.6.0 :rtype: generator """ return (t for t in self.tokenize(text, *args, **kwargs)) ##### SENTIMENT ANALYZERS #### DISCRETE = "ds" CONTINUOUS = "co" [docs] class BaseSentimentAnalyzer(metaclass=ABCMeta): """Abstract base class from which all sentiment analyzers inherit. Should implement an ``analyze(text)`` method which returns either the results of analysis. """ _trained: bool kind = DISCRETE def __init__(self): self._trained = False def train(self): # Train me self._trained = True [docs] @abstractmethod def analyze(self, text) -> Any: """Return the result of of analysis. Typically returns either a tuple, float, or dictionary. """ # Lazily train the classifier if not self._trained: self.train() # Analyze text return None ##### PARSERS ##### [docs] class BaseParser(metaclass=ABCMeta): """Abstract parser class from which all parsers inherit from. All descendants must implement a ``parse()`` method. """ [docs] @abstractmethod def parse(self, text: AnyStr): """Parses the text.""" ...
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4