You can also use pandas pd.Timedelta('1D')
(it's extremely flexible and you can even pass something like pd.Timedelta('1d 5h 9s')
for 1 day, 5 hours and 9 seconds).
A convenient thing about pandas is that its datetime objects are built on datetime.datetime
, so any operation involving Python's datetime
objects work fine on pandas datetime objects and vice versa.
import pandas as pd
import numpy as np
from datetime import datetime, date, timedelta
datetime.now() - pd.Timedelta('1d') # datetime.datetime(2023, 2, 21, 15, 35, 23, 603832)
pd.Timestamp('now') - timedelta(days=1) # Timestamp('2023-02-21 15:35:23.741866')
pd.Timestamp('now') - pd.Timedelta('1d') # Timestamp('2023-02-21 15:35:23.882746')
pd.Timestamp('now') - np.timedelta64(1, 'D') # Timestamp('2023-02-21 15:35:24.032356')
date(2022, 2, 22) - pd.Timedelta('10d') # datetime.date(2022, 2, 12)
The advantage of pandas is that you can perform vectorized operations (even if the dtype is object). You can use either of pd.Timedelta
/datetime.timedelta
/np.timedelta64
.
pd.Series([datetime(2023,2,22), datetime(2023,2,21), datetime(2023,2,20)]) - pd.Timedelta('1d')
pd.Series([date(2023,2,22), date(2023,2,21), date(2023,2,20)]) - timedelta(days=1)
pd.Series([date(2023,2,22), date(2023,2,21), date(2023,2,20)]) - np.timedelta64(1, 'D')
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4