A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://scikit-learn.sourceforge.net/dev/developers/../modules/generated/sklearn.svm.LinearSVC.html below:

sklearn.svm.LinearSVC — scikit-learn 0.17.dev0 documentation

C : float, optional (default=1.0)

Penalty parameter C of the error term.

loss : string, ‘hinge’ or ‘squared_hinge’ (default=’squared_hinge’)

Specifies the loss function. ‘hinge’ is the standard SVM loss (used e.g. by the SVC class) while ‘squared_hinge’ is the square of the hinge loss.

penalty : string, ‘l1’ or ‘l2’ (default=’l2’)

Specifies the norm used in the penalization. The ‘l2’ penalty is the standard used in SVC. The ‘l1’ leads to coef_ vectors that are sparse.

dual : bool, (default=True)

Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features.

tol : float, optional (default=1e-4)

Tolerance for stopping criteria.

multi_class: string, ‘ovr’ or ‘crammer_singer’ (default=’ovr’) :

Determines the multi-class strategy if y contains more than two classes. ovr trains n_classes one-vs-rest classifiers, while crammer_singer optimizes a joint objective over all classes. While crammer_singer is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If crammer_singer is chosen, the options loss, penalty and dual will be ignored.

fit_intercept : boolean, optional (default=True)

Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered).

intercept_scaling : float, optional (default=1)

When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased.

class_weight : {dict, ‘balanced’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y))

verbose : int, (default=0)

Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context.

random_state : int seed, RandomState instance, or None (default=None)

The seed of the pseudo random number generator to use when shuffling the data.

max_iter : int, (default=1000)

The maximum number of iterations to be run.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4