A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/VarianceTest.html below:

VarianceTest—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

VarianceTest[data]

tests whether the variance of the data is one.

VarianceTest[{data1,data2}]

tests whether the variances of data1 and data2 are equal.

VarianceTest[dspec,σ02]

tests a dispersion measure against σ02.

VarianceTest[dspec,σ02,"property"]

returns the value of "property".

Details and Options Examplesopen allclose all Basic Examples  (3)

Test variances from two populations for equality:

Create a HypothesisTestData object for further property extraction:

The full test table:

Compare the variance of a population to a particular value:

Test the ratio of the variances of two populations against a particular value:

Perform the test with alternative hypothesis :

Scope  (15) Testing  (11)

Test whether the variance of a population is one:

The -values are typically large under :

The -values are typically small when is false:

Compare the variance of a population to a particular value:

Compare the variance of a quantity data to a particular value:

Compare the variances of two populations:

The -values are typically large when the variances are equal:

The -values are typically small when the variances are not equal:

Test whether the ratio of the variances of two populations is a particular value:

The following forms are equivalent:

The order of the datasets should be considered when determining :

Using Automatic applies the generally most powerful appropriate test:

The property "AutomaticTest" can be used to determine which test was chosen:

Perform a particular test for equal variance:

Any number of tests can be performed simultaneously:

Perform all tests appropriate to the data simultaneously:

Use the property "AllTests" to identify which tests were used:

Create a HypothesisTestData object for repeated property extraction:

The properties available for extraction:

Extract some properties from a HypothesisTestData object:

The -value and test statistic from a Levene test:

Extract any number of properties simultaneously:

The -value and test statistic from the BrownForsythe test:

Reporting  (4)

Tabulate the results from a selection of tests:

A full table of all appropriate test results:

A table of selected test results:

Retrieve the entries from a test table for customized reporting:

The -values are above 0.05, so there is not enough evidence to reject normality at that level:

Tabulate -values for a test or group of tests:

The -value from the table:

A table of -values from all appropriate tests:

A table of -values from a subset of tests:

Report the test statistic from a test or group of tests:

The test statistic from the table:

A table of test statistics from all appropriate tests:

Options  (10) AlternativeHypothesis  (3)

A two-sided test is performed by default:

Test versus :

Perform a two-sided test or a one-sided alternative:

Test versus :

Test versus :

Test versus :

Perform tests with one-sided alternatives when a null value is given:

Test versus :

Test versus :

SignificanceLevel  (3)

Set the significance level for diagnostic tests:

By default, 0.05 is used:

Setting the significance level may alter which test is automatically chosen:

A rank-based test would have been chosen by default:

The significance level is also used for "TestConclusion" and "ShortTestConclusion":

VerifyTestAssumptions  (4)

Diagnostics can be controlled as a group using All or None:

Verify all assumptions:

Check no assumptions:

Diagnostics can be controlled independently:

Assume normality but check for symmetry:

Only check for normality:

Test assumption values can be explicitly set:

It is often useful to bypass diagnostic tests for simulation purposes:

The assumptions of the test hold by design, so a great deal of time can be saved:

The results are identical:

Applications  (2)

Test whether the variances of some populations are equivalent:

The first two populations have similar variances:

The third population differs in variance from the first:

An object with a length of 2.15 cm was measured with the same ruler by 25 grade-school students in two different classes:

The second group is superior in their precision:

Compare the accuracy of the groups using squared error:

The first group is significantly more accurate:

Properties & Relations  (7)

The -value suggests the expected proportion of false positives (Type I errors):

Setting the size of a test to 0.05 results in an erroneous rejection of about 5% of the time:

The power of each test is the probability of rejecting when it is false:

The power of the tests at six different levels. The SiegelTukey has the lowest power:

The power of the tests is proportional to the sample size:

The power of the tests is lower than in the previous example:

A two-sided -value is twice the smaller of the two one-sided -values:

The BrownForsythe and Levene tests are equivalent to the Fisher ratio test for a single sample:

The variance test works with the values only when the input is a TimeSeries:

The variance test works with all the values together when the input is a TemporalData:

Test all the values only:

Test whether the variances of the two paths are equal:

Possible Issues  (2)

The Conover and SiegelTukey tests are not defined for a single sample:

Some tests assume the data is normally distributed:

Conover's test and the SiegelTukey test do not assume normality:

Neat Examples  (1)

Compute the statistic when the null hypothesis is true:

The test statistic given a particular alternative:

Compare the distributions of the test statistics:

Wolfram Research (2010), VarianceTest, Wolfram Language function, https://reference.wolfram.com/language/ref/VarianceTest.html. Text

Wolfram Research (2010), VarianceTest, Wolfram Language function, https://reference.wolfram.com/language/ref/VarianceTest.html.

CMS

Wolfram Language. 2010. "VarianceTest." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/VarianceTest.html.

APA

Wolfram Language. (2010). VarianceTest. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/VarianceTest.html

BibTeX

@misc{reference.wolfram_2025_variancetest, author="Wolfram Research", title="{VarianceTest}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/VarianceTest.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_variancetest, organization={Wolfram Research}, title={VarianceTest}, year={2010}, url={https://reference.wolfram.com/language/ref/VarianceTest.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4