A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/SolveValues.html below:

SolveValues—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL SolveValues

SolveValues[expr,vars]

gives the values of vars determined by the solutions of the system expr.

Details and Options Examplesopen allclose all Basic Examples  (5)

Solve a quadratic equation:

Solve simultaneous equations in and :

Solve an equation over the reals:

Solve an equation over the positive integers:

Solve equations in a geometric region:

Scope  (87) Basic Uses  (7)

Solutions are given as lists of values of the specified variables:

Check that solutions satisfy the equations:

If there are no solutions, SolveValues returns an empty list:

Some of the variables may appear in the solutions as free parameters:

Find solutions over specified domains:

Solve equations with coefficients involving a symbolic parameter:

Plot the real parts of the solutions for y as a function of the parameter a:

Solution of this equation over the reals requires conditions on the parameters:

Use Normal to remove the conditions:

Solution of this equation over the positive integers requires introduction of a new parameter:

List the first 10 solutions:

Complex Equations in One Variable  (16)

Polynomial equations solvable in radicals:

To use general formulas for solving cubic equations, set CubicsTrue:

By default, SolveValues uses Root objects to represent solutions of general cubic equations:

General polynomial equations:

Polynomial equations with multiple roots:

Find five roots of a polynomial of a high degree:

Polynomial equations with symbolic coefficients:

Algebraic equations:

Complete solutions to transcendental equations:

Partial solutions to transcendental equations:

SolveValues cannot find all solutions here:

Find three solutions:

Univariate elementary function equations over bounded regions:

Univariate holomorphic function equations over bounded regions:

Here SolveValues finds some solutions but is not able to prove there are no other solutions:

Equation with a purely imaginary period over a vertical stripe in the complex plane:

Find a specified number of roots of an unrestricted complex equation:

Symbolic functions:

Nonanalytic complex equations:

Systems of Complex Equations in Several Variables  (12)

Systems of linear equations:

Linear equations with symbolic coefficients:

Underdetermined systems of linear equations:

Linear equations with no solutions:

Systems of polynomial equations:

Find five out of a trillion roots of a polynomial system:

Polynomial equations with symbolic coefficients:

Algebraic equations:

Transcendental equations:

Find a specified number of solutions of transcendental equations:

Square analytic systems over bounded boxes:

Nonanalytic equations:

Real Equations in One Variable  (13)

Polynomial equations:

Polynomial equations with multiple roots:

Polynomial equations with symbolic coefficients:

Algebraic equations:

Piecewise equations:

Transcendental equations, solvable using inverse functions:

Transcendental equations, solvable using special function zeros:

Transcendental inequalities, solvable using special function zeros:

Exp-log equations:

High-degree sparse polynomial equations:

Algebraic equations involving high-degree radicals:

Equations involving non-rational real powers:

Equation with a double root:

Tame elementary function equations:

Elementary function equations in bounded intervals:

Holomorphic function equations in bounded intervals:

Periodic elementary function equations over the reals:

Systems of Real Equations and Inequalities in Several Variables  (10)

Linear systems:

Polynomial systems:

Quantified polynomial systems:

Algebraic systems:

Piecewise systems:

Transcendental systems, solvable using inverse functions:

Systems exp-log in the first variable and polynomial in the other variables:

Quantified system:

Systems elementary and bounded in the first variable and polynomial in the other variables:

Quantified system:

Systems holomorphic and bounded in the first variable and polynomial in the other variables:

Quantified system:

Square systems of analytic equations over bounded regions:

Diophantine Equations  (11)

Linear systems of equations:

Linear systems of equations and inequalities:

Univariate polynomial equations:

Binary quadratic equations:

Thue equations:

Sum of squares equations:

The Pythagorean equation:

Bounded systems of equations and inequalities:

Highdegree systems with no solutions:

Transcendental Diophantine systems:

Polynomial systems of congruences:

Modular Equations  (4)

Linear systems:

Univariate polynomial equations:

Systems of polynomial equations and inequations:

Quantified polynomial systems:

Equations over Finite Fields  (3)

Univariate equations:

Systems of linear equations:

Systems of polynomial equations:

Systems with Mixed-Variable Domains  (2)

Mixed real and complex variables:

Mixed real and integer variables:

Systems with Geometric Region Constraints  (9)

Solve over special regions in 2D:

Plot it:

Solve over special regions in 3D:

Plot it:

A quantified system:

An implicitly defined region:

A parametrically defined region:

Derived regions:

Plot it:

Eliminate quantifiers over a Cartesian product of regions:

Regions dependent on parameters:

The answer depends on the parameter value :

Use to specify that is a vector in :

In this case, is a vector in :

Options  (26) Assumptions  (4)

Specify conditions on parameters using Assumptions:

By default, no solutions that require parameters to satisfy equations are produced:

With an equation on parameters given as an assumption, a solution is returned:

Assumptions that contain solve variables are considered to be a part of the system to solve:

Equivalent statement without using Assumptions:

With parameters assumed to belong to a discrete set, solutions involving arbitrary conditions are returned:

InverseFunctions  (3)

By default, SolveValues uses inverse functions but prints warning messages:

For symbols with the NumericFunction attribute, symbolic inverses are not used:

With InverseFunctions->True, SolveValues does not print inverse function warning messages:

Symbolic inverses are used for all symbols:

With InverseFunctions->False, SolveValues does not use inverse functions:

Solving algebraic equations does not require using inverse functions:

Here, a method based on Reduce is used, as it does not require using inverse functions:

MaxExtraConditions  (4)

By default, no solutions requiring extra conditions are produced:

Unless the parameters are discrete:

The default setting, MaxExtraConditions->0, gives no solutions requiring conditions:

MaxExtraConditions->1 gives solutions requiring up to one equation on parameters:

MaxExtraConditions->2 gives solutions requiring up to two equations on parameters:

Give solutions requiring the minimal number of parameter equations:

Give all solutions:

By default, SolveValues drops inequation conditions on continuous parameters:

With MaxExtraConditions->All, SolveValues includes all conditions:

MaxRoots  (4)

Find out of roots of a polynomial:

Find out of roots of a polynomial system:

Find solutions of a transcendental system:

When the system contains symbolic parameters, the option value is ignored:

Modulus  (1)

Solve equations over the integers modulo 9:

VerifySolutions  (1)

SolveValues verifies solutions obtained using non-equivalent transformations:

With VerifySolutions->False, SolveValues does not verify the solutions:

Some of the solutions returned with VerifySolutions->False are not correct:

This uses a fast numeric test in an attempt to select correct solutions:

In this case, numeric verification gives the correct solution set:

WorkingPrecision  (1)

By default, SolveValues finds exact solutions of equations:

Computing the solution using 100-digit numbers is faster:

The result agrees with the exact solution in the first 100 digits:

Computing the solution using machine numbers is much faster:

The result is still quite close to the exact solution:

Applications  (7)

Solve a quadratic equation:

Find intersection points of a circle and a parabola:

Find conditions for a quartic to have all roots equal:

A method using Subresultants:

A method using quantifier elimination:

Plot a space curve given by an implicit description:

Plot the projection of the space curve on the {x,y} plane:

Find a Pythagorean triple:

Find a sequence of Pythagorean triples:

Find how to pay $2.27 postage with 10-, 23-, and 37-cent stamps:

The same task can be accomplished with IntegerPartitions:

Find 200 roots of a complex analytic function:

Show the roots on the complex plot for the function:

Properties & Relations  (15)

Solutions are given as lists and satisfy the equations:

For univariate equations, SolveValues repeats solutions according to their multiplicity:

Solutions of algebraic equations are often given in terms of Root objects:

Use N to compute numeric approximations of Root objects:

Root objects may involve parameters:

Use Series to compute series expansions of Root objects:

The series satisfies the equation up to order 11:

SolveValues gives values of the solutions:

Solve represents solutions in terms of replacement rules:

Reduce represents solutions in terms of Boolean combinations of equations and inequalities:

SolveValues uses fast heuristics to solve transcendental equations, but may give incomplete solutions:

Reduce uses methods that are often slower, but finds all solutions and gives all necessary conditions:

Use FindInstance to find solution instances:

Like Reduce, FindInstance can be given inequalities and domain specifications:

Use DSolve to solve differential equations:

Use RSolve to solve recurrence equations:

SolveAlways gives the values of parameters for which complex equations are always true:

The same problem can be expressed using ForAll and solved with SolveValues, Solve or Reduce:

Resolve eliminates quantifiers, possibly without solving the resulting quantifier-free system:

Eliminate eliminates variables from systems of complex equations:

This solves the same problem using Resolve:

Reduce, Solve and SolveValues additionally solve the resulting equations:

is bijective iff the equation has exactly one solution for each :

Use FunctionBijective to test whether a function is bijective:

Use FunctionAnalytic to test whether a function is analytic:

An analytic function can have only finitely many zeros in a closed and bounded region:

SolveValues finds an explicit function of satisfying the equation :

Use ImplicitD to find the derivative of an implicitly defined function:

Possible Issues  (9)

SolveValues gives generic solutions; solutions involving equations on parameters are not given:

Reduce gives all solutions, including those that require equations on parameters:

With MaxExtraConditions->All, SolveValues also gives non-generic solutions:

SolveValues results do not depend on whether some of the input equations contain only parameters. The following two systems are equivalent and have no generic solutions:

Use MaxExtraConditions to specify the number of parameter conditions allowed:

Use the Exists quantifier to find solutions that are valid for some value of parameter :

SolveValues does not eliminate solutions that are neither generically correct nor generically incorrect:

The solutions are correct for and incorrect for :

For transcendental equations, SolveValues may not give all solutions:

Use Reduce to get all solutions:

SolveValues with Method->"Reduce" uses Reduce to find solutions, but returns solution values:

Using inverse functions allows SolveValues to find some solutions fast:

Finding the complete solution may take much longer, and the solution may be large:

This finds the values of n for which x==2 is a solution:

Interpretation of assumptions depends on their syntactic properties. Here the solution is generic in the parameter space restricted by the assumptions:

This mathematically equivalent assumption contains the solve variable, and hence is treated as a part of the system to solve:

There are no generic solutions, because the input is interpreted as:

The solution is non-generic, since it requires the parameters to satisfy an equation:

When parameters are restricted to a discrete set, the notion of genericity is not well defined, and all solutions are returned:

Removable singularities of input equations are generally not considered valid solutions:

However, solutions may include removable singularities that are cancelled by automatic simplification:

The removable singularity at is cancelled by evaluation:

Here the removable singularity at is cancelled by Together, which is used to preprocess the equation:

The value of MaxRoots is used only for systems with numeric coefficients:

When symbolic parameters are present, the option value is ignored:

Expressions given as variables are treated as atomic objects and not as functions of their subexpressions:

Effectively, variables are replaced with new symbols before the equations are solved:

The result comes from:

Wolfram Research (2021), SolveValues, Wolfram Language function, https://reference.wolfram.com/language/ref/SolveValues.html (updated 2024). Text

Wolfram Research (2021), SolveValues, Wolfram Language function, https://reference.wolfram.com/language/ref/SolveValues.html (updated 2024).

CMS

Wolfram Language. 2021. "SolveValues." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/SolveValues.html.

APA

Wolfram Language. (2021). SolveValues. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SolveValues.html

BibTeX

@misc{reference.wolfram_2025_solvevalues, author="Wolfram Research", title="{SolveValues}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SolveValues.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_solvevalues, organization={Wolfram Research}, title={SolveValues}, year={2024}, url={https://reference.wolfram.com/language/ref/SolveValues.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4