A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/RegionFarthestDistance.html below:

RegionFarthestDistance—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL Examplesopen allclose all Basic Examples  (3)

Find the farthest distance from a point to the unit disk:

Plot the distance as a function of position:

Find the farthest distance between a disk and rectangle:

Show the regions:

Find the farthest distance between two meshes:

Show the meshes:

Scope  (16) Special Regions  (8)

Points:

RegionFarthestDistance accepts coordinate lists:

Lines:

Polygons:

Simplices:

Boxes:

Balls:

Spheres:

Regions in n:

Formula Regions  (2)

The distance to a disk represented as an ImplicitRegion:

A cylinder:

The distance to a disk represented as a ParametricRegion:

Using a rational parametrization of the disk:

A cylinder:

Mesh Regions  (1)

The farthest distance between two 1D meshes:

2D:

3D:

Options  (2) WorkingPrecision  (2)

RegionFarthestDistance will try to compute the distance using the same precision as its inputs:

Compute the distance using machine arithmetic:

In some cases, the exact answer cannot be computed:

Find the RegionFarthestDistance using 30 digits of precision:

Properties & Relations  (4) Wolfram Research (2023), RegionFarthestDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionFarthestDistance.html. Text

Wolfram Research (2023), RegionFarthestDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionFarthestDistance.html.

CMS

Wolfram Language. 2023. "RegionFarthestDistance." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionFarthestDistance.html.

APA

Wolfram Language. (2023). RegionFarthestDistance. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionFarthestDistance.html

BibTeX

@misc{reference.wolfram_2025_regionfarthestdistance, author="Wolfram Research", title="{RegionFarthestDistance}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/RegionFarthestDistance.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_regionfarthestdistance, organization={Wolfram Research}, title={RegionFarthestDistance}, year={2023}, url={https://reference.wolfram.com/language/ref/RegionFarthestDistance.html}, note=[Accessed: 11-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4