A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/RegionCentroid.html below:

RegionCentroid—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL Examplesopen allclose all Basic Examples  (2)

Find the centroid of a region:

The centroid of a Polygon:

Scope  (21) Special Regions  (10)

The centroid for Point corresponds to the mean of the coordinates:

Points can be used in any number of dimensions:

Line:

Lines can be used in any number of dimensions:

Rectangle can be used in 2D:

Cuboid can be used in any number of dimensions:

A 4D Cuboid:

A Simplex can correspond to a point, line, or triangle in 2D:

Simplices can be used in any number of dimensions:

The centroid of a standard unit Simplex in dimension :

The centroid of a Polygon may lie outside the region:

In 3D:

Disk can be used in 2D:

Ball can be used in any dimension:

In 4D:

Disk as an ellipse can be used in 2D:

Ellipsoid can be used in any dimension:

Circle can be used in 2D:

As an ellipse:

Cylinder can be used in 3D:

Cone can be used in 3D:

Formula Regions  (2)

The centroid of a disk represented as an ImplicitRegion:

The centroid of a cylinder:

The centroid of a disk represented as a ParametricRegion:

Using a rational parameterization of the disk:

The centroid of a cylinder:

Applications  (5)

Find the center of mass for a mesh region:

Compute the center of mass of a region with density given by and compare to the centroid:

Visualize it:

The center of mass is shifted because the density is highest in the lower-left:

Find a perpendicular bisector of a triangle:

Visualize circumcenter and bisectors in red:

Compute a centroidal Voronoi diagram from a random set of points:

Define a function that computes the centroid of each Voronoi region in a Voronoi mesh:

Recursively apply VoronoiMesh to the centroids of the precursive Voronoi regions:

Visualize the Voronoi mesh and centroids at each iteration:

The generating point (black) of each Voronoi region converges toward the region's centroid (red):

Estimate the centroid of a region by taking the Mean of a random sampling of points in the region:

Properties & Relations  (3) Wolfram Research (2014), RegionCentroid, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionCentroid.html. Text

Wolfram Research (2014), RegionCentroid, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionCentroid.html.

CMS

Wolfram Language. 2014. "RegionCentroid." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionCentroid.html.

APA

Wolfram Language. (2014). RegionCentroid. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionCentroid.html

BibTeX

@misc{reference.wolfram_2025_regioncentroid, author="Wolfram Research", title="{RegionCentroid}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/RegionCentroid.html}", note=[Accessed: 08-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_regioncentroid, organization={Wolfram Research}, title={RegionCentroid}, year={2014}, url={https://reference.wolfram.com/language/ref/RegionCentroid.html}, note=[Accessed: 08-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4