A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/ProbitModelFit.html below:

ProbitModelFit: Probit Regression—Wolfram Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

ProbitModelFit[{{x1,y1},{x2,y2},},{f1,f2,},x]

constructs a binomial probit regression model of the form that fits the yi for each xi.

ProbitModelFit[data,{f1,f2,},{x1,x2,}]

constructs a binomial probit regression model of the form where the fi depend on the variables xk.

ProbitModelFit[{m,v}]

constructs a binomial probit regression model from the design matrix m and response vector v.

Details and Options Examplesopen allclose all Basic Examples  (1)

Define a dataset:

Fit a probit model to the data:

Evaluate the model at a point:

Plot the data points and the models:

Scope  (13) Data  (6)

Fit data with success probability responses, assuming increasing integer-independent values:

This is equivalent to:

Weight by the number of observations for each predictor value:

This gives the same best fit function as success failure data:

Fit a list of rules:

Fit a rule of input values and responses:

Specify a column as the response:

Fit a model given a design matrix and response vector:

See the functional form:

Fit the model referring to the basis functions as and :

Obtain a list of available properties:

Properties  (7) Data & Fitted Functions  (1)

Fit a probit model:

Extract the original data:

Obtain and plot the best fit:

Obtain the fitted function as a pure function:

Get the design matrix and response vector for the fitting:

Residuals  (1)

Examine residuals for a fit:

Visualize the raw residuals:

Visualize Anscombe residuals and standardized Pearson residuals in stem plots:

Dispersion and Deviances  (1)

Fit a probit model to some data:

The estimated dispersion is 1 by default:

Use Pearson's as the dispersion estimator instead:

Plot the deviances for each point:

Obtain the analysis of deviance table:

Get the residual deviances from the table:

Parameter Estimation Diagnostics  (1)

Obtain a formatted table of parameter information:

Extract the column of -statistic values:

Influence Measures  (1)

Fit some data containing extreme values to a probit model:

Check Cook distances to identify highly influential points:

Check the diagonal elements of the hat matrix to assess influence of points on the fitting:

Prediction Values  (1)

Fit a probit model:

Plot the predicted values against the observed values:

Goodness-of-Fit Measures  (1)

Obtain a table of goodness-of-fit measures for a probit model:

Compute goodness-of-fit measures for all subsets of predictor variables:

Rank the models by AIC:

Generalizations & Extensions  (1)

Perform other mathematical operations on the functional form of the model:

Integrate symbolically and numerically:

Find a predictor value that gives a particular value for the model:

Options  (8) ConfidenceLevel  (1)

The default gives 95% confidence intervals:

Use 99% intervals instead:

Set the level to 90% within FittedModel:

CovarianceEstimatorFunction  (1)

Fit a probit model:

Compute the covariance matrix using the expected information matrix:

Use the observed information matrix instead:

DispersionEstimatorFunction  (1)

Fit a probit model:

Compute the covariance matrix:

Compute the covariance matrix estimating the dispersion by Pearson's :

IncludeConstantBasis  (1)

Fit a probit model:

Fit the model with zero constant term:

LinearOffsetFunction  (1)

Fit data to a probit model:

Fit data to a model with a known Sqrt[x] term:

NominalVariables  (1)

Fit the data, treating the first variable as a nominal variable:

Treat both variables as nominal:

Weights  (1)

Fit a model using equal weights:

Give explicit weights for the data points:

WorkingPrecision  (1)

Use WorkingPrecision to get higher precision in parameter estimates:

Obtain the fitted function:

Reduce the precision in property computations after the fitting:

Properties & Relations  (4) Possible Issues  (1)

Responses outside the interval from 0 to 1 are not valid for probit models:

Wolfram Research (2008), ProbitModelFit, Wolfram Language function, https://reference.wolfram.com/language/ref/ProbitModelFit.html (updated 2025). Text

Wolfram Research (2008), ProbitModelFit, Wolfram Language function, https://reference.wolfram.com/language/ref/ProbitModelFit.html (updated 2025).

CMS

Wolfram Language. 2008. "ProbitModelFit." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/ProbitModelFit.html.

APA

Wolfram Language. (2008). ProbitModelFit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ProbitModelFit.html

BibTeX

@misc{reference.wolfram_2025_probitmodelfit, author="Wolfram Research", title="{ProbitModelFit}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/ProbitModelFit.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_probitmodelfit, organization={Wolfram Research}, title={ProbitModelFit}, year={2025}, url={https://reference.wolfram.com/language/ref/ProbitModelFit.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4