A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/NumericalOrder.html below:

NumericalOrder—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

NumericalOrder[e1,e2]

gives 1 if e1<e2, -1 if e1>e2, 0 if e1 and e2 are numerically the same, and orders by type or using canonical order if e1 and e2 are not numerically comparable.

Details Examplesopen allclose all Basic Examples  (4)

These two numbers are not ordered:

These two are numerically the same:

Compare numeric expressions:

This is not always the same as the canonical order of expressions:

Compare quantities:

Compare dates:

Scope  (6)

Compare any two numeric expressions:

- comes before any real-valued expression:

comes after any real-valued expression:

Complex valued expressions are ordered first by the real part:

When the real part is numerically the same, they are ordered by the absolute value of the imaginary part:

Compare quantities of compatible units:

The comparison is performed by converting into a common unit:

DateObject expressions are ordered by AbsoluteTime:

Use NumericalOrder as ordering function:

Sort using the ordering permutation:

The resulting list is not ordered in canonical order, but it is ordered in numerical order:

Applications  (1)

Get the numerical ordering for a list:

Properties & Relations  (8)

For numeric expressions of different value, NumericalOrder compares them using those values:

Order always compares expressions structurally and may give different results:

Like Order, NumericalOrder is an antisymmetric function of expressions: NumericalOrder[e1,e2]==-NumericalOrder[e2,e1]:

Unlike Order, NumericalOrder[e1,e2] may return zero for non-identical e1, e2:

For comparable expressions e1, e2 a result NumericalOrder[e1,e2]0 implies e1-e2==0:

NumericalOrder compares inexact numbers using all available significant digits:

For machine-precision numbers, Less, Equal, Greater, etc. use 7 bits of tolerance:

Inexact numbers with any other precision are compared up to that precision:

NumericalOrder compares complex values by the real part and then by absolute value of the imaginary part:

This is consistent with Order for numbers:

Less, LessEqual and related functions cannot compare complex numbers:

Equivalent quantities have a NumericalOrder of 0:

The canonical order distinguishes between the two representations:

Use Equal to show that they are indeed equivalent quantities:

For non-numerical expressions e1, e2, NumericalOrder coincides with Order:

Possible Issues  (1)

Sorting with NumericalOrder will not guarantee a particular ordering for different representations of the same number:

This does not give the same result for a permutation of the list:

The canonical order will rearrange in a definite way:

A stricter order can be defined by using Order to resolve cases where NumericalOrder gives 0:

Wolfram Research (2017), NumericalOrder, Wolfram Language function, https://reference.wolfram.com/language/ref/NumericalOrder.html. Text

Wolfram Research (2017), NumericalOrder, Wolfram Language function, https://reference.wolfram.com/language/ref/NumericalOrder.html.

CMS

Wolfram Language. 2017. "NumericalOrder." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NumericalOrder.html.

APA

Wolfram Language. (2017). NumericalOrder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NumericalOrder.html

BibTeX

@misc{reference.wolfram_2025_numericalorder, author="Wolfram Research", title="{NumericalOrder}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/NumericalOrder.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_numericalorder, organization={Wolfram Research}, title={NumericalOrder}, year={2017}, url={https://reference.wolfram.com/language/ref/NumericalOrder.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4