A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/NonlinearModelFit.html below:

Construct a nonlinear model for data—Wolfram Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

NonlinearModelFit[{{x1,y1},{x2,y2},},form,{β1,},x]

constructs a nonlinear model with formula form that fits the yi for each xi using the free parameters βi.

NonlinearModelFit[data,form,params,{x1,}]

constructs a nonlinear model where form depends on the variables xk.

NonlinearModelFit[data,{form,cons},params,{x1,}]

constructs a nonlinear model subject to the parameter constraints cons.

Details and Options Examplesopen allclose all Basic Examples  (1)

Fit a nonlinear model to some data:

Obtain the functional form:

Evaluate the model at a point:

Visualize the fitted function with the data:

Extract and plot the residuals:

Scope  (15) Data  (7)

Fit a model of one variable, assuming increasing integer-independent values:

Fit a model of more than one variable:

Fit a list of rules:

Fit a rule of input values and responses:

Specify a column as the response:

Give starting values when parameters are far from the default value 1:

With the default starting values, the model is effectively 0:

Obtain a list of available properties for a nonlinear model:

Properties  (8) Data & Fitted Functions  (1)

Fit a nonlinear model:

Extract the original data:

Obtain and plot the best fit:

Obtain the fitted function as a pure function:

Residuals  (1)

Examine residuals for a fit:

Visualize the raw residuals:

Visualize scaled residuals in stem plots:

Plot the absolute differences between the standardized and Studentized residuals:

Sums of Squares  (1)

Fit a nonlinear model to some data:

Extract the estimated error variance:

Obtain the analysis of variance table:

Get the sums of squares column from the table:

Parameter Estimation Diagnostics  (1)

Obtain a formatted table of parameter information:

Extract the column of -statistic values:

Curvature Diagnostics  (1)

Fit a nonlinear model to some data:

Obtain a table of curvature measures for the fitted model:

Extract the list of numeric values from the table:

Extract the max parameter effects curvature value:

Influence Measures  (1)

Fit some data containing extreme values to a nonlinear model:

Use single deletion variances to check the impact on the error variance of removing each point:

Check the diagonal elements of the hat matrix to assess influence of points on the fitting:

Prediction Values  (1)

Fit a nonlinear model:

Plot the predicted values against the observed values:

Obtain tabular results for mean- and single-prediction confidence intervals:

Get the single-prediction intervals from the table:

Extract 99% mean prediction bands:

Goodness-of-Fit Measures  (1)

Obtain a table of goodness-of-fit measures for a nonlinear model:

Generalizations & Extensions  (2)

Fit data to a model defined by a numerical operation:

Use ParametricNDSolveValue to make the computation much faster by caching solutions of the differential equation:

Perform other mathematical operations on the functional form of the model:

Integrate symbolically and numerically:

Find a predictor value that gives a particular value for the model:

Options  (10) ConfidenceLevel  (1)

The default gives 95% confidence intervals:

Use 99% intervals instead:

Set the level to 90% within FittedModel:

Method  (3)

Use the default method for minimizing the least-squares objective function:

Use Newton's method for optimization:

Configure the step control method for Newton's algorithm:

Use the interior point method with constraints:

Perform a more exhaustive search with the global optimization methods from NMinimize:

Use the submethod "RandomSearch":

Specify the number of initial search points for the "RandomSearch" algorithm:

VarianceEstimatorFunction  (1)

Use the default unbiased estimate of error variance:

Assume a known error variance:

Estimate the variance by the mean squared error:

Weights  (4)

Fit a model using equal weights:

Give explicit weights for the data points:

Use Around values to give different weights to data points:

Find the weights that were used to account for the uncertainty in the data:

Use Around values in both the independent values and responses:

In some cases, the root finding algorithm that handles uncertainty in the independent variates does not converge using the standard option settings:

Use the FixedPoint algorithm with a low DampingFactor and high MaxIterations to reach convergence:

WorkingPrecision  (1)

Use WorkingPrecision to get higher precision in parameter estimates:

Obtain the fitted function:

Reduce the precision in property computations after the fitting:

Applications  (1)

Simulate some data:

Fit a nonlinear model to the data:

Obtain and visualize 90% confidence bands for the fit:

Obtain 95%, 99%, and 99.9% confidence bands:

Visualize the confidence bands for the various levels:

Properties & Relations  (5) Possible Issues  (3)

Distributional assumptions are based upon an unconstrained model:

Here the confidence interval for contains points that violate the constraint:

The coefficient of determination in NonlinearModelFit is calculated with uncorrected data:

The coefficient of determination:

Direct calculation using residuals and data:

Sometimes is defined using centralized data:

Fit data that spans over multiple orders of magnitude:

An exponential fit might appear correct at first glance:

But shows significant deviations on a log scale:

This can be addressed by using weights inversely proportional to the variance:

Wolfram Research (2008), NonlinearModelFit, Wolfram Language function, https://reference.wolfram.com/language/ref/NonlinearModelFit.html (updated 2025). Text

Wolfram Research (2008), NonlinearModelFit, Wolfram Language function, https://reference.wolfram.com/language/ref/NonlinearModelFit.html (updated 2025).

CMS

Wolfram Language. 2008. "NonlinearModelFit." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/NonlinearModelFit.html.

APA

Wolfram Language. (2008). NonlinearModelFit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NonlinearModelFit.html

BibTeX

@misc{reference.wolfram_2025_nonlinearmodelfit, author="Wolfram Research", title="{NonlinearModelFit}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/NonlinearModelFit.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_nonlinearmodelfit, organization={Wolfram Research}, title={NonlinearModelFit}, year={2025}, url={https://reference.wolfram.com/language/ref/NonlinearModelFit.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4