We deliver solutions for the AI eraâcombining symbolic computation, data-driven insights and deep technology expertise.
Modulusn
is an option that can be given in certain algebraic functions to specify that integers should be treated modulo n.
Details Examplesopen allclose all Basic Examples (1) Scope (6)Compute PolynomialGCD over the integers modulo 2:
Factor a polynomial over the integers modulo 3:
Find a GroebnerBasis over the integers modulo 5:
Reduce equations over the integers modulo 7:
Compute the determinant of a matrix modulo 8:
Find a modulus for which a system of equations has a solution:
Properties & Relations (2) HistoryIntroduced in 1988 (1.0)
Wolfram Research (1988), Modulus, Wolfram Language function, https://reference.wolfram.com/language/ref/Modulus.html. TextWolfram Research (1988), Modulus, Wolfram Language function, https://reference.wolfram.com/language/ref/Modulus.html.
CMSWolfram Language. 1988. "Modulus." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Modulus.html.
APAWolfram Language. (1988). Modulus. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Modulus.html
BibTeX@misc{reference.wolfram_2025_modulus, author="Wolfram Research", title="{Modulus}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/Modulus.html}", note=[Accessed: 12-July-2025 ]}
BibLaTeX@online{reference.wolfram_2025_modulus, organization={Wolfram Research}, title={Modulus}, year={1988}, url={https://reference.wolfram.com/language/ref/Modulus.html}, note=[Accessed: 12-July-2025 ]}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4