A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/LocationEquivalenceTest.html below:

LocationEquivalenceTest—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL Details and Options Examplesopen allclose all Basic Examples  (3)

Test whether the means or medians from two or more populations are all equivalent:

Create a HypothesisTestData object for repeated property extraction:

The complete block test can be used to test for mean differences with complete block design:

There is a significant difference among the means at the 0.05 level:

Use the Friedman rank test to test for differences in medians with complete block design:

It appears that at least one median differs significantly from the others:

Scope  (9) Testing  (5)

Perform a particular test for equal locations:

Any number of tests can be performed simultaneously:

Perform all tests appropriate to the data simultaneously:

Use the property "AllTests" to identify which tests were used:

Create a HypothesisTestData object for repeated property extraction:

The properties available for extraction:

Extract some properties from a HypothesisTestData object:

The -value and test statistic from a -sample -test:

Extract any number of properties simultaneously:

The -value and test statistic from a KruskalWallis test:

Reporting  (4)

Tabulate the results from a selection of tests:

A full table of all appropriate test results:

A table of selected test results:

Retrieve the entries from a test table for customized reporting:

The -values are above 0.05, so there is not enough evidence to reject at that level:

Tabulate -values for a test or group of tests:

The -value from the table:

A table of -values from all appropriate tests:

A table of -values from a subset of tests:

Report the test statistic from a test or group of tests:

The test statistic from the table:

A table of test statistics from all appropriate tests:

Options  (8) Method  (2)

Compute the KruskalWallis test for a group of datasets:

The rescaled test statistic follows an FRatioDistribution:

Use the asymptotic chi-square approximation:

Use the asymptotic chi-square distribution for the Friedman rank test:

By default, Conover's -distribution approximation is used:

SignificanceLevel  (3)

Set the significance level for diagnostic tests:

The default level is 0.05:

Setting the significance level may alter which test is automatically chosen:

A median-based test would have been chosen by default:

The significance level is also used for "TestConclusion" and "ShortTestConclusion":

VerifyTestAssumptions  (3)

Diagnostics can be controlled as a group using All or None:

Verify all assumptions:

Check no assumptions:

Diagnostics can be controlled independently:

Assume normality but check for symmetry:

Only check for normality:

Test assumption values can be explicitly set:

The Kruskal-Wallis test was previously chosen because the data is not normally distributed:

Applications  (4)

Test whether a group of populations shares a common location:

The first group of datasets was drawn from populations with very different locations:

Populations represented by the second group all have similar locations:

Morphological measures of two crab varieties were taken for each of the two sexes. Determine whether the measures differ across the various groups:

The rear width is the only measure that differs by gender when variety is ignored:

All measures are significantly different when gender and variety are considered simultaneously:

A pilot study was conducted for 75 patients with type II diabetes who had failed to achieve target weight loss with a particular medication. The patients were randomly assigned to three groups: a control group continuing the original medication, and two treatment groups that received 50 and 100 mg of a new medication, respectively. Weight loss in pounds over a 12-week period was recorded:

There is a significant difference in the means of the groups:

Using a Bonferroni correction in a test of each pairwise difference shows that both treatment levels perform better than the control, but that they are not significantly different from one another:

A group of six food critics rated four restaurants for quality on a 100-point scale. Determine whether there is a significant difference in the quality of the restaurants according to critics:

Bar charts of the median score by critic:

Bar charts of the median score for each restaurant:

Accounting for the blocked structure, a significant difference in quality can be detected:

Properties & Relations  (12)

The -value returned by a -sample -test is equivalent to that of TTest for two samples:

The KruskalWallis test is a -sample extension of the two-sample MannWhitney test:

The MannWhitney -value is corrected for continuity and ties:

Under the -sample -test statistic follows an FRatioDistribution[g-1,n-g], where g is the number of datasets and n is the total number of observations:

Under the complete block and Friedman rank test statistics with t treatments and g blocks follows an FRatioDistribution[t-1,(g-1)(t-1)]:

The Friedman statistic can be transformed to follow a ChiSquareDistribution[g-1]:

Compute a -value using ChiSquareDistribution:

This transformation is done automatically with Method set to "Asymptotic":

Under the KruskalWallis test statistic asymptotically follows a ChiSquareDistribution[g-1] where g is the number of datasets:

By default, the test statistic is rescaled to follow an FRatioDistribution[g-1,n-g]:

Conceptually, a comparison is made between the pooled and average individual variances:

Larger pooled variances indicate different means:

The ratio of pooled to individual variances:

LocationEquivalenceTest effectively detects how far this ratio is from 1:

The and test statistics are used in LocationEquivalenceTest:

The KruskalWallis statistic is rank-based:

For -sample and KruskalWallis tests, the statistic can be computed using LinearModelFit:

A design matrix:

The -sample -test:

The KruskalWallis test is identical but uses ranks:

Use LocationTest for two datasets:

The results are equivalent:

LocationTest can also test more complicated hypotheses:

The location equivalence test ignores the time stamps when the input is a TimeSeries:

The location equivalence test recognizes the path structure of a TemporalData:

Use the values directly:

Possible Issues  (3)

All of the tests require that the data has equal variances:

The -sample -test and complete block test require that the data is normally distributed:

The KruskalWallis test or Friedman rank test should be used if the data is not normally distributed:

The Friedman rank and complete block tests require equal sample sizes:

Neat Examples  (1)

Compute the statistic when the null hypothesis is true:

The test statistic given a particular alternative:

Compare the distributions of the test statistics:

Wolfram Research (2010), LocationEquivalenceTest, Wolfram Language function, https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html. Text

Wolfram Research (2010), LocationEquivalenceTest, Wolfram Language function, https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html.

CMS

Wolfram Language. 2010. "LocationEquivalenceTest." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html.

APA

Wolfram Language. (2010). LocationEquivalenceTest. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html

BibTeX

@misc{reference.wolfram_2025_locationequivalencetest, author="Wolfram Research", title="{LocationEquivalenceTest}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_locationequivalencetest, organization={Wolfram Research}, title={LocationEquivalenceTest}, year={2010}, url={https://reference.wolfram.com/language/ref/LocationEquivalenceTest.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4